本文主要研究内容
作者(2019)在《AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications》一文中研究指出:Tetraphenylethylene(TPE) and its derivatives, as the widely used aggregation-induced emission(AIE) fluorophores, have attracted rapidly growing interest in the fields of material science and biological technology due to their unique light-emitting mechanism—they are nearly non-emissive in dilute solution but emit brilliant fluorescence in the aggregate state because of the restriction of intramolecular motion. Coordination-driven self-assembly, which provides a highly effective method to put the individual chromophores together, is consistent with the AIE mechanism of TPE. During the past few years, some AIE-active metal-organic coordination complexes have been successfully constructed via coordination-driven self-assembly, and their AIE properties and applications have been investigated. In this review, we survey the recent progress on TPE-based metal-organic coordination complexes and their applications in fluorescence sensors, cell imaging, and light-emitting materials. We will introduce them from three different types of structures: metallacycles, metallacages, and metal-organic frameworks(MOFs).
Abstract
Tetraphenylethylene(TPE) and its derivatives, as the widely used aggregation-induced emission(AIE) fluorophores, have attracted rapidly growing interest in the fields of material science and biological technology due to their unique light-emitting mechanism—they are nearly non-emissive in dilute solution but emit brilliant fluorescence in the aggregate state because of the restriction of intramolecular motion. Coordination-driven self-assembly, which provides a highly effective method to put the individual chromophores together, is consistent with the AIE mechanism of TPE. During the past few years, some AIE-active metal-organic coordination complexes have been successfully constructed via coordination-driven self-assembly, and their AIE properties and applications have been investigated. In this review, we survey the recent progress on TPE-based metal-organic coordination complexes and their applications in fluorescence sensors, cell imaging, and light-emitting materials. We will introduce them from three different types of structures: metallacycles, metallacages, and metal-organic frameworks(MOFs).
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Journal of Polymer Science的,发表于刊物Chinese Journal of Polymer Science2019年04期论文,是一篇关于,Chinese Journal of Polymer Science2019年04期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Journal of Polymer Science2019年04期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。