阶化Cartan型李代数W(m;n)的I(X)-诱导表示

阶化Cartan型李代数W(m;n)的I(X)-诱导表示

论文摘要

这篇论文主要讨论特征p(p>2)域上W(m;n)型李代数的表示。当特征x正则半单时,我们可以将其高秩的表示约化至低秩的表示。由于阶化Carton型李代数L=W(m;n)当n≠1时不是限制李代数,Kac-Weisfeiler的特征函数划分不可约模的基本方法已不适用.通过舒斌关于广义限制李代数的讨论,我们知道广义限制李代数的x-约化模范畴与其本原p-包络的(?)-约化模范畴足一致的,其中(?)为x在本原p-包络上的平凡扩张。因此我们可以通过讨论L的本原p-包络的不可约表示来给出L的不可约表示。对于一个指标集I(?){1,2,…,m}及它的补集(?){1,2,…,m}I,我们有除幂代数(?)以及两个广义Witt代数W(I)和W(?)。对于任意的李代数(?),我们可以定义一个关于除幂代数(?)的loop代数:(?)我们可以约化(?)的表示至其阶化子代数(?)[0],I=S?W(?)(I)的表示,其中由于(?)W(I)的任意子代数被W(?)及S?正规化,我们可以考虑W(I)和W(?)的诱导表示。于是当特征x正则半单时,我们将L的表示约化至低秩的表示:当x是正则半单时,W(m;n)的不可约广义x-约化表示等同于LI=S(?)W(?)(I)相应的不可约表示的诱导表示。

论文目录

  • 摘要
  • ABSTRACT
  • 第1节 引言
  • 第2节 基本概念
  • 第3节 阶化Cartan型李代数关于指标集Ⅰ的阶化
  • 第4节 L=W(m;n)的诱导表示
  • 第5节 由loop代数引起的W(m;n)的诱导表示
  • 第6节 主要结论
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].基于向量型李代数的方程族可积耦合及其哈密顿结构研究[J]. 内蒙古大学学报(自然科学版) 2020(03)
    • [2].Rota-Baxter q-3-李代数[J]. 吉林大学学报(理学版) 2020(05)
    • [3].一类非交换n-李代数的结构[J]. 吉林大学学报(理学版) 2020(05)
    • [4].特征为5的域上的量子3-李代数[J]. 海南热带海洋学院学报 2019(02)
    • [5].3-李代数的广义导子[J]. 数学年刊A辑(中文版) 2017(04)
    • [6].3-李代数的辛结构[J]. 数学学报(中文版) 2016(05)
    • [7].W型限制李代数的内余分裂问题[J]. 黑龙江大学自然科学学报 2017(03)
    • [8].半单李代数的对偶根系[J]. 伊犁师范学院学报(自然科学版) 2017(03)
    • [9].3-李代数不可分解的T_θ~*-扩张[J]. 数学进展 2016(03)
    • [10].阶化李代数及其导子的研究[J]. 青岛大学学报(自然科学版) 2016(01)
    • [11].具有1-维导代数的6-维3-李代数的结构(英文)[J]. 黑龙江大学自然科学学报 2013(04)
    • [12].一类可解完备李代数[J]. 河北大学学报(自然科学版) 2015(01)
    • [13].简约李代数和局部李代数的生成元[J]. 数学的实践与认识 2013(15)
    • [14].扭量子环面李代数的算子表示[J]. 科技通报 2012(11)
    • [15].5维3-李代数的结构[J]. 河北大学学报(自然科学版) 2011(01)
    • [16].一类特征单的n-李代数[J]. 数学年刊A辑(中文版) 2011(02)
    • [17].φ-自由n-李代数的分解[J]. 保定学院学报 2011(03)
    • [18].关于辫子李代数(英文)[J]. Journal of Southeast University(English Edition) 2011(02)
    • [19].n-李代数自同构群和导子的提升[J]. 东北师大学报(自然科学版) 2011(04)
    • [20].一类可解3-李代数的导子代数[J]. 黑龙江大学自然科学学报 2011(06)
    • [21].低维3-李代数的分类[J]. 数学物理学报 2010(01)
    • [22].n-李代数的结构[J]. 数学年刊A辑(中文版) 2010(03)
    • [23].由结合代数构造q-李代数及低维q-李代数的分类[J]. 青岛大学学报(自然科学版) 2009(01)
    • [24].一类低维可解3-李代数[J]. 河北大学学报(自然科学版) 2009(02)
    • [25].朱林生教授李代数结构与表示的工作评述[J]. 常熟理工学院学报 2009(04)
    • [26].一类单完备李代数[J]. 数学年刊A辑(中文版) 2009(03)
    • [27].10维线状李代数1[J]. 青岛大学学报(自然科学版) 2009(02)
    • [28].n-李代数的张量积[J]. 河北大学学报(自然科学版) 2009(04)
    • [29].6维3-李代数[J]. 唐山师范学院学报 2009(05)
    • [30].半单的5-维3-李代数[J]. 邯郸学院学报 2009(03)

    标签:;  ;  ;  

    阶化Cartan型李代数W(m;n)的I(X)-诱导表示
    下载Doc文档

    猜你喜欢