探究水利水电工程基础处理施工技术孙中强

探究水利水电工程基础处理施工技术孙中强

孙中强

阜阳市颍泉水利建筑有限公司安徽省阜阳市236300

摘要:水利水电工程建设过程,应该提高基础处理施工技术水平,从而才能确保水利水电工程建设质量,本文深入对其进行了探索,希望进一步阐述能够为相关工作开展提供有效保证。

关键词:水利水电工程;基础处理;施工技术

引言

水利水电作为一项极具复杂性的工程,在建设与施工过程中需要考虑多方面的因素,才能保证工程的施工质量。基础处理施工技术作为水利水电工程的基础与关键环节,其处理效果影响着后续施工的顺利进行,因此,是整个施工环节的关键。相关人员在水利水电的规划与设计阶段,要重视其基础处理,保证其处理效果符合施工的规范性要求,使得后续施工不受不良基础处理的影响,保证水利水电工程的施工效果,使其发挥最好的经济社会效益。

1水利水电工程基础施工的特点

水利水电工程基础施工技术的特点是涉及面广,覆盖占地面积较大,工程量大,技术要求高,地质条件复杂,基础处理大多属于隐蔽性工程。在施工时,由于施工现场的地质、岩层以及土质等各方面的因素和不利的条件都会对施工质量造成不同程度的影响,在基础施工时,很容易受到这些不利因素的影响。在不同的地域环境和自然条件下均能受到干扰,不同程度的影响着基础施工的效果,针对不同的地质条件、不同的施工环境和不同的技术质量要求,要采取不同的处理措施和先进技术两者相互结合,这样才能保证水利工程基础处理达到预期的效果。

2干扰水利水电工程基础处理施工的原因

2.1基础地基的牢固性

地基的稳定和牢固是保障水利水电工程建设质量的根本,如果地基发生了故障,不但会干扰基础部分的抗滑能力,同时还会造成基础不够牢固,这样的话会大大减小工程建设的安全以及可靠度。基础地基是否稳定直接关系到水利水电工程能否更长时间的为人们服务,所以在实际的施工过程中,应该将地基打扎实,从根本上保障施工的工程质量。

2.2地基渗漏

在实现了地基的稳定之后,就要采取必要的措施预防和控制地基的渗漏问题,渗漏问题也是影响地基稳定性的重要因素。如果水利水电工程的地基出现渗漏问题,就会使工程的稳定性与安全性受到影响,使得工程存在极大的安全隐患。因此,相关人员一定要及时掌握地基的情况,实时监测地基的数据变化,一旦发现问题及时采取不要的补救措施,以减少地基的渗漏对工程的不利影响。

2.3自然灾害

自然灾害的影响、气候环境的变化也会对地基造成负面的影响,地震、山体滑坡、恶劣天气等不可抗力对地基造成的损害是巨大的,基于此特点,想要延长的地基的使用寿命和确保安全使用功能,就必须建立一个足够稳定的基础和采取一系列的抗灾措施,以此来保障在面对自然灾害时能够有较好的抵抗力。如,提高抗震等级,加强监测提前预告等。

3水利水电工程基础处理施工技术要点

3.1锚固技术的运用

锚固技术的施工步骤比较简单,同时成本比较低,被普遍的运用在水利水电工程基础处理施工过程中。水利水电工程施工一般都很特别,大多数情况下,其施工地点都是居住人员比较少同时临近水源的地方,可以降低对附近居民造成的干扰。除此之外,为了实现灌溉的方便,应该在降低耕地占用面积的根本上尽可能的临近农田。在实际的过程中,锚固技术需要先把受拉杆件的一端固定在适宜的地方,然后受拉杆件的另一端和地上的建筑物连接起来。锚固技术高效的提升了水利水电工程的抗震能力与抗风能力,尽可能的强化了工程的稳定性与牢固性。除此之外,其还提升了基础部分能够承受重力的能力,减小了施工人员的工作量,同时也减小了工程建设的成本,使得施工单位用最小的成本获得更大的利润。然而,锚固技术不但只用在基础处理施工过程中,同时其在堤坝和输电塔等方面也有很好的运用,这种技术的出现高效的增强了地基的稳定性。

3.2灌浆技术在基础中的应用

灌浆技术在水利水电工程基础处理中广泛应用,主要目的用来改善岩体节理、裂隙、破碎带等发育不完整岩石的结构力学性能,提高岩体的整体性与均质性,提高基础面的承载力、提高岩体的抗压强度与弹性模量,减少岩体的变形与不均匀沉降、处理基岩底部及深层的渗漏等问题,以确保结构稳定和整个水利工程的正常运行。灌浆技术可以把胶凝材料和不良的地质有效的粘合在一起,提高地基的承载力和岩石的完整性,提高了各类地质的抗渗作用,同时还能够很好的预防水流在地层内部的渗透现象,针对基础的渗漏问题,帷幕灌浆技术很好的解决了这一问题,通过深层灌浆,再结合地质条件,采用不同的浆液的浓度,调整水泥的细度,在特定的条件下进行化学灌浆,在地下形成防水幕墙,降低了底层的透水性,降低了坝体的渗透压力,减少了渗流量,防止产生机械式的管涌等一系列的渗漏问题。

3.3水泥土加固技术

与混凝土加固技术相同,水泥土加固技术在水利水电工程基础建设中同样应用广泛。利用水泥土加固技术,能进一步提高坝体的外部承载力,增强坝体的稳定性,并保证地基强度。水泥土加固技术的主要原理为:通过对混凝土充分搅拌,形成水泥浆,在坝体地基基础建设的内部进行浇灌,使坝体由内而外进行强度提高。该项技术需要严格把控水泥和水的配合比,并且在浇灌的过程中,还要严格控制浇灌速度和浇灌量。水泥浆制备过程的材料选取也尤为重要,关注整个材料选取和水泥浆配比过程,是提高基础工程质量效果的前提。

3.4硅化加固施工法

水利水电工程建设中,有些施工企业为了保证工程地基的稳定性,还会采用硅化加固施工法,该施工方法利用电渗原理来进行施工,在施工过程中,需要借助于网状注浆管来保证施工效果。该施工方法主要应用于软土地基处理,由于软土地基的强度等不足,使得工程的稳定性存在一定的缺陷。而硅化加固施工主要是用网状注浆管对软土地基进行硅酸钠与氯化钙溶液的电动硅化注入,在注入过程中会产生化学反应,生产一种胶凝物质,而这种物质能够提升软土的连接性与强度,保障软土地基的稳固性,该种施工方式虽然能够起到良好的加固效果,但是在施工中的能源消耗极大,不利于可持续发展理念的落实。

3.5深层搅拌技术的运用

深入搅拌桩施工技术大多数情况下是在硬度较低的地基基础施工中被运用,利用深入搅拌的施工方法,可以增强土质结构的硬度还有基础结构的牢固,这样的话可以保障水利水电工程的施工质量还有施工过程中的人员安全。在深入搅拌桩施工的过程中,需要结合实际的情况考虑地基基础所能承受重力的能力,以及搅拌桩所能承受重力的能力,实施工程的合理排布,从而表现出深入搅拌桩施工技术的运用特色,增强水利水电工程基础结构的牢固性,同时强化水利水电工程基础的防渗能力。

结束语

根据本文的论述得出在水利水电工程建设中基础处理施工技术方案的选择极为重要,对于水利水电这种比较复杂的大型工程来说,更需要科学、合理、先进的施工技术,只有这样才能保证水利水电工程的安全性和稳定性。结合水利水电工程所处的特殊地理环境,在施工中要着重加强工程的施工质量管控,保证在这种环境下水利水电工程能够安全运行。本文就此展开的一系列讨论和建议,希望在同类工程中有一定的帮助和借鉴。

参考文献

[1]王莹,仲晓雷.水利水电工程基础处理施工技术初探[J].南方农机,2019,50(5):250.

[2]王云奇.水利水电工程基础处理施工技术探讨[J].科技经济导刊,2019,27(6):79.

[3]靳翔,李继珍,普忠波.水利水电工程地基基础处理施工探讨[J].工程技术研究,2019,4(4):112-113.

标签:;  ;  ;  

探究水利水电工程基础处理施工技术孙中强
下载Doc文档

猜你喜欢