论文摘要
优先发展城市公共交通系统,是解决城市交通问题的有效途径。当前我国公交因信息技术落后,导致管理效率低下、公交服务水平不高。因此,发展公交信息化将有助于公交从简单、直觉的管理到科学、智能的管理的转变,真正提高公交服务水平。掌握公交乘客流量分布数据,并准确预测公交客运量,是优化公交线网设置和线路运力配置、改善车辆调度管理和客观评价服务水平的不可或缺的数据基础和前提。针对广泛应用的红外APC乘客流量检测技术误差较大的问题,本文着重研究了改善客流检测精度的方法,并对现有公交客运量预测模型进行了改进研究。对提高公交乘客统计精度和实现公交客运量的准确预测,进而推动公交信息化和智能化具有重要实际意义。在分析人工抽样统计、利用IC卡信息统计及APC三类典型客流统计技术基础上,探讨了红外APC技术在公交应用中的实际问题。研究了红外APC数据匹配到线路站点的处理技术、红外APC公交客流计数误差范围、产生计数误差的根源以及红外APC数据呈现出来的计数误差规律等。在此基础上,利用获得的红外APC计数误差规律,提出了一套红外APC公交客流计数精度改进技术。通过运用实际采集客流和红外APC数据,经改进后的红外APC计数精度明显提高,验证了提出方法的有效性。在分析现有公交客运量预测模型基础上,以提高预测精度为目标,研究了公交客运量数据的规律,获得了公交车公里载客量呈周期变化特征;并通过分析,证明影响公交客运量的关键为车辆数、线路里程等因素。以此为基础,建立了一个基于车公里载客量特征的改进公交客运量预测模型。并利用重庆市某公交分公司公交营运数据,对模型进行了实验验证。结果表明,获得的线路客运量预测值最大相对误差不超过15%,平均预测误差比典型预测算法降低一半左右。根据本预测模型开发了公交客运量预测系统,实现了公交营运数据从报表到系统数据库的自动转换、预测结果及预测精度图表显示等功能。
论文目录
摘要ABSTRACT1 绪论1.1 研究背景1.1.1 优先发展城市公共交通系统的意义1.1.2 城市公交系统信息化的特征及意义1.2 本文研究的目的、意义和研究内容1.2.1 研究目的及意义1.2.2 研究内容1.3 论文结构1.4 本章小结2 公交客流统计研究现状及相关技术2.1 自动乘客计数技术的发展2.2 典型公交客流统计技术2.2.1 人工抽样统计技术2.2.2 利用IC 卡信息统计客流技术2.2.3 APC 技术2.3 典型公交客流统计技术的分析2.4 GPS 定位技术2.4.1 GPS 的组成及定位原理2.4.2 基于GPS 的公交车辆定位2.5 本章小结3 红外APC 公交乘客计数精度改进技术研究3.1 红外APC 在公交客流统计中的应用3.1.1 红外APC 计数系统原理3.1.2 红外APC 传感器安装方式3.2 公交线路、车辆及乘客信息采集3.3 公交乘客人数到线路站点的匹配技术3.4 红外APC 在公交客流统计中的应用分析3.4.1 红外APC 统计公交客流存在的问题3.4.2 计数错误的表现形式3.4.3 计数误差的分类及根源3.5 红外APC 公交客流计数改进技术的研究3.5.1 修正红外APC 数据的必要性3.5.2 红外APC 计数误差规律分析3.5.3 红外APC 公交客流计数修正模型3.6 红外APC 公交客流计数修正模型的验证3.7 本章小结4 公交客运量预测技术研究4.1 国内外公交客运量预测技术的发展现状4.2 典型公交客运量预测模型的研究及分析4.2.1 时间序列模型4.2.2 灰色模型4.2.3 神经网络模型4.2.4 多元回归模型4.2.5 典型公交客运量预测模型的分析4.3 改进公交客运量预测模型的研究4.3.1 影响公交客流变化的因素分析4.3.2 公交客流变化规律分析4.3.3 基于车公里载客量特征的改进公交客运量预测模型4.4 本章小结5 本文公交客运量预测模型实验结果及分析5.1 实验环境5.1.1 公交线路的选择5.1.2 所选线路的概况5.2 实验数据5.3 本文公交客运量预测模型的实验结果及分析5.3.1 本文公交客运量预测模型与其它模型预测结果的比较5.3.2 本文公交客运量预测算法的性能评估5.4 公交客运量预测系统的实验结果及性能分析5.5 本章小结6 总结与展望致谢参考文献附录附表
相关论文文献
标签:红外论文; 精度改进论文; 公交客运量论文; 车公里载客量论文;
红外APC乘客计数精度改进及公交客运量预测模型研究
下载Doc文档