生物质与煤混烧过程中细微颗粒排放特性研究

生物质与煤混烧过程中细微颗粒排放特性研究

论文摘要

生物质与煤混烧可以利用生物质碳循环的优点,并适用于现有燃煤锅炉改造,有效地降低成本,提高燃烧效率,但是由于生物质相比于煤含有更高含量的碱金属,而这些碱金属矿物在燃烧过程中又极易发生气化从而造成燃烧后的设备安全及环境问题,如灰沉积及其腐蚀的加剧、飞灰颗粒物排放的环境危害等。因此,合理全面的分析探讨生物质与煤混烧后细微颗粒物的形成与排放具有重要的科学与实际意义。本论文主要通过在高温沉降炉和立式热天平炉上开展生物质与煤的混烧试验,分析不同试验条件下生物质与煤混烧时细微颗粒(PM10)形成与排放的主要影响因素,研究不同生物质中生物化学组分的含量以及对PM10排放的影响趋势,并深入探讨生物质中不同存在形式碱金属的迁移特性及其对混烧后细微颗粒生成与排放的作用规律。本文研究的主要内容如下:试验工况对混烧PM10排放特性的影响。试验结果表明:不同种类的煤样与生物质混烧后生成的PM10在其质量粒径分布上并无太大差异,且与单一原料燃烧时较为相似,均呈双峰分布。生物质与煤混烧过程中,碱金属和元素S,Cl大部分富集在亚微米颗粒当中,并且主要以碱金属的氯酸盐和硫酸盐的形式存在。随着氧气浓度的增加,亚微米颗粒(PM1)与超微米颗粒物(PM1-10)的排放浓度随之递增,但PM1在PM10中所占的比例却出现较大幅度的降低。随着燃烧温度的升高,PM1和PM1-10排放上升,且PM1的增长幅度较大。当生物质掺烧比例较小时,其与煤混烧后的PM1和PM1-10排放均要低于单一燃料燃烧时的拟合结果,也即混烧后的PM1和PM1-10均有所降低。然而,随着生物质的进一步添加,不同混合燃料产生的PM10排放表现出一定的差异,但其整体的PM1和PM1-10排放仍呈上升趋势。在对PM10的元素组成分析后发现,随着混合燃料中生物质添加比例的增加,PM10中的主要成灰元素均呈现上升趋势,尤其是PM1中碱金属含量,并且碱金属与硫元素的变化趋势较为相近;不同生物质燃料与煤混烧时,燃料配比对PM10中元素组成的影响也不尽相同。生物质中生物组分的含量差异及其对生物质热解燃烧特性和混烧PM10排放的影响。试验结果表明:生物质样品中的纤维素含量均要高于木质素,且纤维素含量的范围为55~78%,木质素含量为19~34%。在生物质的热解和燃烧过程中,随着燃料中纤维素含量的增加,样品失重明显加剧,并且在300~400C的试验温度区间内,主要为纤维素的分解反应阶段,此时大量挥发分的快速析出导致其样品的失重最为剧烈;木质素由于含有苯环而热分解相对较缓且主要失重温度区间较高较宽。在生物组分对混烧PM10排放特性影响的实验研究中发现,不同生物组分的燃料样品的PM10质量粒径分布同样呈双峰趋势;随着生物组分中木质素含量的增加,样品的PM1峰值位置呈现向大粒径方向偏移的趋势,且模拟样品(纤维素与木质素不同配比混合的模拟燃料)的PM10排放呈现较好的线性递增趋势。然而,在生物组分对混烧PM10排放特性的影响方面,实际生物质燃料与模拟混合燃料仍存在一定的差异,且具体表现为燃烧特性、焦的结构以及无机成分等因素的不同所造成。生物质中不同存在形式碱金属的成灰迁移特性及其对混烧PM10形成的贡献。通过对生物质原料样品进行水洗与酸洗的化学预处理,试验结果表明:生物质样品中的离子态碱金属在燃烧过程中易于挥发,随着燃烧温度的升高,其气化量也随之增加,并且在有Cl,S等非金属离子态元素存在的条件下,使得大部分气态碱金属在成灰过程中更多的以氯酸盐或硫酸盐等细小的飞灰颗粒存在。而当样品在经水洗分离和酸洗分离的化学处理后,燃料中易气化部分的碱金属元素含量大幅减少,大量水溶态或酸溶态的S,Cl等非金属“催化性”元素同时也被分离脱除,从而导致燃料样品燃烧时的碱金属气化量下降,且在成灰过程中向细微颗粒转化的途径也受到较大的抑制。与此同时,化学处理后样品中有机可燃成分的比例增加,更加促进了燃烧反应的进行。随着燃烧温度的不断升高,硅铝酸盐等无机矿物含量的进一步增多,熔融聚合程度的进一步加大,均使得Si,Al等元素对气态碱金属的结合与捕集效应增强。而这些与硅酸盐结合或被硅铝酸盐所捕集的碱金属在成灰过程中又更多会以较粗的颗粒存在于底灰或飞灰当中。通过对燃烧过程的热力学平衡计算分析发现,生物质样品在化学处理后,燃料中碱金属的气化量和气化率不仅受到了较大抑制,而且其中碱金属的气化温度也随之明显升高。水洗生物质与煤混烧的PM10排放特性试验中,PM10排放分布均呈现大幅下降趋势,尤其是PM1的峰值明显减小。水洗化学分离能够很大程度上减排PM10以及其中的碱金属含量,LPI各级细微颗粒中碱金属元素的富集浓度在水洗处理后平均下降了95%以上。虽然生物质样品的水洗化学处理过程中,K元素离子态的脱除率要远大于Na,但是每分离去除单位浓度的Na元素对其在燃烧后各级细微颗粒中的含量富集的减排效果却要明显高于K。也即表明离子态Na元素的存在对燃烧后PM10形成与排放的影响相比于K更为显著。

论文目录

  • 摘要
  • ABSTRACT
  • 1 绪论
  • 1.1 我国的能源结构及生物质能的利用现状
  • 1.2 生物质与煤混烧的重要性及其存在的问题
  • 1.3 细微颗粒的定义及危害
  • 10形成机理概述'>1.4 煤燃烧过程中PM10形成机理概述
  • 10形成机理概述'>1.5 生物质燃烧过程中PM10形成机理概述
  • 1.6 问题的提出及本文主要研究内容
  • 2 实验方法与原料特性
  • 2.1 实验系统及组成
  • 2.2 实验方法
  • 2.3 实验原料选择及特性分析
  • 3 生物质与煤混烧时细微颗粒排放特性分析
  • 3.1 引言
  • 10生成特性分析'>3.2 煤燃烧PM10生成特性分析
  • 10生成特性分析'>3.3 生物质燃烧PM10生成特性分析
  • 10生成特性分析'>3.4 生物质与煤混烧PM10生成特性分析
  • 3.5 本章小结
  • 4 生物组分对混烧细微颗粒排放特性的影响
  • 4.1 引言
  • 4.2 生物组分对生物质热解及燃烧特性的影响
  • 10排放特性的影响'>4.3 生物组分对混烧PM10排放特性的影响
  • 10排放影响的差异性因素分析'>4.4 生物组分对混烧PM10排放影响的差异性因素分析
  • 4.5 本章小结
  • 5 碱金属对混烧细微颗粒排放特性的影响
  • 5.1 引言
  • 5.2 样品的化学处理及其特性分析
  • 5.3 不同条件下生物质中碱金属的迁移特性分析
  • 10排放特性的影响'>5.4 碱金属对混烧PM10排放特性的影响
  • 5.5 本章小结
  • 6 总结与建议
  • 6.1 全文总结
  • 6.2 下一步工作建议
  • 致谢
  • 参考文献
  • 附录1 攻读博士学位期间发表的论文
  • 相关论文文献

    • [1].面向多服务的美国生物质炭科技[J]. 国际学术动态 2019(02)
    • [2].磷石膏和生物质炭联合改良云南红壤的试验研究[J]. 磷肥与复肥 2019(12)
    • [3].制备方法对生物质炭外源磷吸附解吸的影响[J]. 土壤通报 2019(05)
    • [4].基于乡镇环境下家用生物质取暖炉人性化设计研究[J]. 居舍 2020(01)
    • [5].生物质灰的特性及综合利用[J]. 科学技术创新 2020(02)
    • [6].四乙烯五胺改性生物质炭对水中锌(Ⅱ)的吸附性能研究[J]. 环境科学学报 2020(02)
    • [7].紫球藻生物质的研究进展[J]. 食品工业 2020(02)
    • [8].生物质灰理化特性及其应用于土壤改良的研究进展[J]. 能源环境保护 2020(01)
    • [9].生物质油精制中催化剂的应用分析[J]. 中国石油和化工标准与质量 2019(22)
    • [10].生物质炭的土壤效应研究综述[J]. 中国农学通报 2020(09)
    • [11].生物质炭对土壤改良及农业生态效应响应的研究进展[J]. 贵州农业科学 2020(02)
    • [12].农业废弃物生物质炭化技术及其应用进展[J]. 亚热带农业研究 2019(04)
    • [13].图说欧洲生物质精炼行业[J]. 中华纸业 2020(05)
    • [14].生物质精炼:欧洲造纸行业发展生物经济的试金石——欧洲制浆造纸行业生物质精炼领域应用专题[J]. 中华纸业 2020(05)
    • [15].欧洲造纸行业向生物质精炼领域转型的影响因素及未来潜力[J]. 中华纸业 2020(05)
    • [16].芬兰和瑞典造纸行业生物质精炼发展情况[J]. 中华纸业 2020(05)
    • [17].德国发展生物质精炼,促进浆纸等传统行业转型:优势、不足与政策选择[J]. 中华纸业 2020(05)
    • [18].生物质复合烧结燃料制备机理分析[J]. 烧结球团 2020(02)
    • [19].炭化工艺对生物质煤焦性能的影响[J]. 煤炭转化 2020(03)
    • [20].生物质炭的固碳减排与合理施用[J]. 农业环境科学学报 2020(04)
    • [21].不同用量生物质炭对小白菜和大蒜产量与品质的影响[J]. 中国农学通报 2020(13)
    • [22].生物质炭的特性和应用研究进展[J]. 广州化工 2020(09)
    • [23].生物质炭作为土壤改良剂在农业上的应用研究进展[J]. 中国资源综合利用 2020(06)
    • [24].生物质炭施用量对旱地酸性红壤理化性质的影响[J]. 土壤 2020(03)
    • [25].生物质炭改善土壤矿质营养吸收的研究进展及作用机制分析[J]. 江苏农业科学 2020(10)
    • [26].生物质基材料的制备和循环利用[J]. 绿色包装 2020(07)
    • [27].生物质炭的制备和应用研究[J]. 应用化工 2020(07)
    • [28].典型农业生物质化学特性的比较与分析[J]. 广东蚕业 2020(04)
    • [29].生物质炭化还田作为土壤改良与循环农业的技术途径分析[J]. 湖北农业科学 2020(14)
    • [30].黑龙江农村深入推进生物质清洁取暖任重道远[J]. 统计与咨询 2020(02)

    标签:;  ;  ;  ;  ;  ;  

    生物质与煤混烧过程中细微颗粒排放特性研究
    下载Doc文档

    猜你喜欢