F2:3设计多QTL定位新方法研究

F2:3设计多QTL定位新方法研究

论文摘要

多数动植物重要经济性状是遗传率较低的数量性状,其遗传分析精度较低。为提高其精度,植物遗传工作者一直在探索。在玉米、棉花和黄瓜等株型较大植物的QTL定位研究中,常常采用F2∶3设计,即将F2单株衍生的F2∶3家系平均数作为F2单株的遗传型值进行遗传分析,以减少试验误差,提高试验精度。早期的F2∶3设计忽略了异质家系的混合分布,只是将F2∶3家系平均数作为F2个体的遗传型值,套用F2模型进行分析。Zhang&Xu(2004)研究表明,这一忽视会显著降低QTL检测功效。这一结果还被Hu(2006)等从胚乳性状角度和Zhu(2007)等从抗性性状角度加以证实。因此,利用QTL异质F2∶3家系内的混合分布是十分必要的。就F2∶3设计的进展来说,目前的F2∶3设计的QTL定位基本上局限于单QTL分析,虽然Zhang等(2004)提出了F2∶3设计的多QTL的Bayesian压缩估计分析方法,但未作细致的模拟研究,也无实际资料的应用研究;至于上位性检测,还未见报道。为了更好的指导遗传分析实践,有必要发展F2∶3设计的多QTL定位方法。本研究基于F2∶3设计目前存在的问题,应用Bayesian压缩估计方法,提出解决方案,并将其拓展到上位性检测。其研究内容和结果如下:1) F2∶3设计全基因组标记的Bayesian分析。考虑异质F2∶3家系的混合分布能提高QTL检测功效和作图精度;同时,用多QTL模型检测QTL会提高QTL检测的功效。因而,在利用QTL异质F2∶3家系内混合分布基础上,提出了F2∶3设计全基因组标记联合分析的Bayesian压缩估计方法。Monte Carlo模拟研究表明:该新方法优于传统的F2设计和区间作图(IM)法;随着F2∶3家系数或家系内植株数的增加,QTL检测功效将显著提高,QTL位置、效应的估计值越来越精确,误差方差估计值标准差越来越小。此外,还比较了QTL效应抽样的两种策略。在新策略中,新抽样得到的QTL效应不是立即被接受,而是经过比较确定是否接受。结果表明:新策略能显著提高QTL检测的功效。2) F2∶3设计全基因组多QTL的Bayesian分析。与F2∶3设计全基因组标记的Bayesian分析相比,QTL位置估计的引入将进一步完善了多标记联合分析,克服当QTL远离标记而造成定位精度不高的弊端。由此,有必要提出多QTL的Bayesian分析方法。Monte Carlo模拟研究表明:随着F2∶3家系数或家系内植株数的增加,利用多QTL的Bayesian分析方法可显著提高QTL定位精度。在抽样策略的模拟研究中,在F2∶3家系数和每家系内植株数乘积固定情况下,可通过适当提高F2∶3家系数,减少家系内植株数,来提高定位精度,即家系数比家系内植株数提供更多的信息。若F2单株数量性状观测值及衍生的F2∶3家系平均数均已获得,F2+F2∶3联合分析优于单一的F2分析或F2∶3分析。3) F2∶3设计全基因组标记间上位性检测的Bayesian分析。若模型中QTL之间存在两两互作,Bayesian压缩估计方法能检测QTL间的互作。Monte Carlo模拟研究证明,随着F2∶3家系数的增加,QTL检测功效越来越高,QTL位置及效应估计值越来越接近真值,误差方差也越来越准确;随着家系内植株数的增加,表现出同样的变化趋势。在抽样方案的研究中,在F2∶3家系数和家系内植株数乘积固定情况下,发现家系数对QTL定位结果的影响要高于家系内植株数。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 文献综述
  • 1 引言
  • 1.1 QTL统计方法
  • 1.1.1 单标记分析
  • 1.1.2 区间作图
  • 1.1.3 复合区间作图
  • 1.1.4 多QTL定位
  • 1.1.5 QTL定位的Bayesian方法
  • 1.1.6 上位性检测的进展
  • 2:3设计'>1.2 F2:3设计
  • 1.3 本研究的目的和意义
  • 2:3设计全基因组标记的Bayesian分析'>第二章 F2:3设计全基因组标记的Bayesian分析
  • 摘要
  • Abstract
  • 2.1 引言
  • 2.2 基本原理
  • 2.2.1 遗传模型
  • 2.2.2 似然函数与参数联合后验分布函数
  • 2.2.3 参数的条件后验分布
  • l1j和(?)l2j的条件后验分布'>2.2.4(?)l1j和(?)l2j的条件后验分布
  • 2.3 模拟研究
  • 2.4 应用举例
  • 2.5 讨论
  • 2.6 结论
  • 2:3设计多QTL的Bayesian分析'>第三章 F2:3设计多QTL的Bayesian分析
  • 摘要
  • Abstract
  • 3.1 引言
  • 3.2 基本原理
  • 2:3设计多QTL分析'>3.2.1 F2:3设计多QTL分析
  • 2:3设计遗传模型'>3.2.1.1 F2:3设计遗传模型
  • 3.2.1.2 QTL位置迭代
  • 2+F2:3多QTL分析遗传模型'>3.2.2 F2+F2:3多QTL分析遗传模型
  • 2+F2:3遗传模型'>3.2.2.1 F2+F2:3遗传模型
  • 2+F2:3联合分析'>3.2.2.2 F2+F2:3联合分析
  • 3.3 模拟研究
  • 3.4 讨论
  • 2:3设计全基因组标记间上位性检测的Bayesian分析'>第四章 F2:3设计全基因组标记间上位性检测的Bayesian分析
  • 摘要
  • Abstract
  • 4.1 引言
  • 4.2 遗传模型
  • 4.2.1 上位性遗传模型
  • 4.2.2 似然函数与参数联合后验分布函数
  • 4.2.3 参数的条件后验分布
  • l1j和(?)l2j的条件后验分布'>4.2.4(?)l1j和(?)l2j的条件后验分布
  • 4.3 模拟研究
  • 4.4 讨论
  • 参考文献
  • 致谢
  • 附:硕士期间已发表和待发表的相关论文
  • 相关论文文献

    • [1].均匀先验分布Bayesian自适应波束形成方法[J]. 信号处理 2020(05)
    • [2].Bayesian inference for ammunition demand based on Gompertz distribution[J]. Journal of Systems Engineering and Electronics 2020(03)
    • [3].Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input[J]. IEEE/CAA Journal of Automatica Sinica 2020(05)
    • [4].Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model[J]. Nuclear Science and Techniques 2020(08)
    • [5].Bayesian regularized quantile regression:A robust alternative for genome-based prediction of skewed data[J]. The Crop Journal 2020(05)
    • [6].Failure Statistics Analysis Based on Bayesian Theory: A Study of FPSO Internal Turret Leakage[J]. China Ocean Engineering 2019(01)
    • [7].Bayesian Analysis of Complex Mutations in HBV, HCV,and HIV Studies[J]. Big Data Mining and Analytics 2019(03)
    • [8].Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization[J]. Journal of Electronic Science and Technology 2019(01)
    • [9].Comparison Between χ~2 and Bayesian Statistics with Considering the Redshift Dependence of Stretch and Color from JLA Data[J]. Communications in Theoretical Physics 2019(09)
    • [10].Bayesian Planning of Optimal Step-stress Accelerated Life Test for Log-location-scale Distributions[J]. Acta Mathematicae Applicatae Sinica 2018(01)
    • [11].Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information[J]. Geoscience Frontiers 2018(06)
    • [12].A Novel Approach for QoS Prediction Based on Bayesian Combinational Model[J]. 中国通信 2016(11)
    • [13].Big Learning with Bayesian methods[J]. National Science Review 2017(04)
    • [14].MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control[J]. Chinese Journal of Mechanical Engineering 2017(05)
    • [15].A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process[J]. Journal of Shanghai Jiaotong University(Science) 2016(02)
    • [16].Reliability Risk Evaluation Method for Complex Mechanical System Based on Optimal Bayesian Network[J]. Journal of Donghua University(English Edition) 2016(02)
    • [17].Simulation of Silty Clay Compressibility Parameters Based on Improved BP Neural Network Using Bayesian Regularization[J]. Earthquake Research in China 2020(03)
    • [18].Prediction of TBM jamming risk in squeezing grounds using Bayesian and artificial neural networks[J]. Journal of Rock Mechanics and Geotechnical Engineering 2020(01)
    • [19].Calibrate complex fracture model for subsurface flow based on Bayesian formulation[J]. Petroleum Science 2019(05)
    • [20].Semiparametric Bayesian Inference for Accelerated Failure Time Models with Errors-in-Covariates and Doubly Censored Data[J]. Journal of Systems Science & Complexity 2017(05)
    • [21].Nonlinear Bayesian Estimation:From Kalman Filtering to a Broader Horizon[J]. IEEE/CAA Journal of Automatica Sinica 2018(02)
    • [22].Bayesian Regularized Regression Based on Composite Quantile Method[J]. Acta Mathematicae Applicatae Sinica 2016(02)
    • [23].Bayesian Reliability Assessment and Degradation Modeling with Calibrations and Random Failure Threshold[J]. Journal of Shanghai Jiaotong University(Science) 2016(04)
    • [24].Traffic-load prediction based on echo state network improved by Bayesian theory in 10G-EPON[J]. The Journal of China Universities of Posts and Telecommunications 2015(02)
    • [25].Investigating Genotype 1a HCV Drug Resistance in NS5A Region via Bayesian Inference[J]. Tsinghua Science and Technology 2015(05)
    • [26].基于Bayesian多分支岩石可钻性值估计[J]. 中国石油大学学报(自然科学版) 2014(03)
    • [27].基于异常值检验的Bayesian方法验前信息可信度计算[J]. 科学技术与工程 2012(31)
    • [28].Application of Bayesian approach to hydrological frequency analysis[J]. Science China(Technological Sciences) 2011(05)
    • [29].Phylogeny of Devonian Lycopsids Inferred from Bayesian Phylogenetic Analyses[J]. Acta Geologica Sinica(English Edition) 2011(03)
    • [30].随机加速寿命试验的Bayesian分析[J]. 淮阴工学院学报 2009(03)

    标签:;  ;  ;  ;  ;  ;  

    F2:3设计多QTL定位新方法研究
    下载Doc文档

    猜你喜欢