本文主要研究内容
作者陈翠玲(2019)在《Schr(?)dinger-Maxwell方程解的存在性》一文中研究指出:自从V.Benci和D.Fortunato的首创工作[11]以来,很多学者根据变分法和临界点理论研究Schrodinger-Maxwell方程解的存在性问题.主要包括:非平凡解的存在性、多重性和不存在性;半经典解的存在性;基态解的存在性;变号基态解的存在性以及多重性.本文在已有的文献基础上,弱化非局部项或非线性项的部分限制条件,应用变分法和临界点理论,证明Schrodinger-Maxwell方程解的存在性.具体内容如下:第一章,简述变分法及临界点理论的发展历程,本文的主要工作和基础知识.第二章,运用变式喷泉定理研究非线性Schrodinger-Maxwell方程无穷多个负的小能量解的存在性.大多数文献考虑的是KK(x= 1,f(x,u)=0,且g(x,uu)是自治时的情形.本章创新之处在于K(x)∈L∞(R3,R+),f(x,tu 是满足一定条件的连续函数,g(x,tu)是非自治的同时成立,研究非线性S chrodinger-Maxwell方程在该种情形下无穷多个负的小能量解的存在性.第三章,在第二章的基础上,进一步研究如下非线性Schrodinger-Maxwell方程的多解性结论.区别于第二章,我们研究h(hh)满足(?)u∈ R,(?)μ>0,使得|h(u)|≤μ(1+u),2H(u)≥h(u)u,并且非线性项含有参数的情形.第四章,我们研究如下一类非线性Schrodinger-Maxwell方程基态解的存在性,其主要工工具是Nehari流形和山路引理,并且g(x,u)=(p+1)b(x)|u|p-1u.本章的新颖之处在于当3<p<<5,hh(u)≠u和g(x,u)非自治同时成立时,考虑的是方程基态解的存在性.第五章是对本文的总结与思考,本文研究的V(x)都满足下方有界,进一步考虑能否再弱化或改进一些假设条件,如V(x)满足周期性或V(x)是变号的,弱化g(x,u)的增长性条件,这几类Schrodinger-Maxwell方程的解是否依然可以存在.
Abstract
zi cong V.Bencihe D.Fortunatode shou chuang gong zuo [11]yi lai ,hen duo xue zhe gen ju bian fen fa he lin jie dian li lun yan jiu Schrodinger-Maxwellfang cheng jie de cun zai xing wen ti .zhu yao bao gua :fei ping fan jie de cun zai xing 、duo chong xing he bu cun zai xing ;ban jing dian jie de cun zai xing ;ji tai jie de cun zai xing ;bian hao ji tai jie de cun zai xing yi ji duo chong xing .ben wen zai yi you de wen suo ji chu shang ,ruo hua fei ju bu xiang huo fei xian xing xiang de bu fen xian zhi tiao jian ,ying yong bian fen fa he lin jie dian li lun ,zheng ming Schrodinger-Maxwellfang cheng jie de cun zai xing .ju ti nei rong ru xia :di yi zhang ,jian shu bian fen fa ji lin jie dian li lun de fa zhan li cheng ,ben wen de zhu yao gong zuo he ji chu zhi shi .di er zhang ,yun yong bian shi pen quan ding li yan jiu fei xian xing Schrodinger-Maxwellfang cheng mo qiong duo ge fu de xiao neng liang jie de cun zai xing .da duo shu wen suo kao lv de shi KK(x= 1,f(x,u)=0,ju g(x,uu)shi zi zhi shi de qing xing .ben zhang chuang xin zhi chu zai yu K(x)∈L∞(R3,R+),f(x,tu shi man zu yi ding tiao jian de lian xu han shu ,g(x,tu)shi fei zi zhi de tong shi cheng li ,yan jiu fei xian xing S chrodinger-Maxwellfang cheng zai gai chong qing xing xia mo qiong duo ge fu de xiao neng liang jie de cun zai xing .di san zhang ,zai di er zhang de ji chu shang ,jin yi bu yan jiu ru xia fei xian xing Schrodinger-Maxwellfang cheng de duo jie xing jie lun .ou bie yu di er zhang ,wo men yan jiu h(hh)man zu (?)u∈ R,(?)μ>0,shi de |h(u)|≤μ(1+u),2H(u)≥h(u)u,bing ju fei xian xing xiang han you can shu de qing xing .di si zhang ,wo men yan jiu ru xia yi lei fei xian xing Schrodinger-Maxwellfang cheng ji tai jie de cun zai xing ,ji zhu yao gong gong ju shi Nehariliu xing he shan lu yin li ,bing ju g(x,u)=(p+1)b(x)|u|p-1u.ben zhang de xin ying zhi chu zai yu dang 3<p<<5,hh(u)≠uhe g(x,u)fei zi zhi tong shi cheng li shi ,kao lv de shi fang cheng ji tai jie de cun zai xing .di wu zhang shi dui ben wen de zong jie yu sai kao ,ben wen yan jiu de V(x)dou man zu xia fang you jie ,jin yi bu kao lv neng fou zai ruo hua huo gai jin yi xie jia she tiao jian ,ru V(x)man zu zhou ji xing huo V(x)shi bian hao de ,ruo hua g(x,u)de zeng chang xing tiao jian ,zhe ji lei Schrodinger-Maxwellfang cheng de jie shi fou yi ran ke yi cun zai .
论文参考文献
论文详细介绍
论文作者分别是来自广西师范大学的陈翠玲,发表于刊物广西师范大学2019-07-18论文,是一篇关于方程论文,临界点理论论文,高能解论文,负能量解论文,基态解论文,广西师范大学2019-07-18论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自广西师范大学2019-07-18论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。