一种有限体积边界嵌入法的研究及应用

一种有限体积边界嵌入法的研究及应用

论文摘要

本文发展了不可压N-S方程的一种有限体积边界嵌入解法(FVIB)。该方法的提出是为了能够方便的求解复杂的动边界绕流问题。控制方程的离散形式与解域外节点无关。在每个时间步上,通过沿物面法向的线性内插或解当地简化的法向动量方程,确定边界嵌入点(Immersed Boundary point)上的流动变量值。在IB点上流动变量值的确定过程中,物面边界条件获得满足。控制方程的人工压缩性解法中,空间离散采用Galerkin有限体积近似,时间推进采用双时间步格式。在远场边界处理中,应用Steger-Warming通量加减分裂格式建立无反射边界条件。应用所发展的FVIB方法模拟运动边界绕流时,可以在固定网格上求解流动方程,无需在每个时间步上对网格进行动态处理,避免了网格更新带来的许多难题。相比于DFD、HCIB等边界嵌入方法,本文所发展的FVIB方法具有程序易实现、适用于非结构网格等主要特点,在数值方法的研究上有着重要的理论意义,在涉及动边界流动的工程问题中也有广阔的应用前景。本文应用FVIB方法,分别模拟了固定圆柱、静止流体中水平振荡圆柱、自由来流中垂直振荡圆柱以及俯仰-振荡翼型的绕流情况。通过上述算例的计算结果与参考文献的数值结果或实验数据的比较,该数值计算方法的可靠性获得了验证。

论文目录

  • 摘要
  • Abstract
  • 目录
  • 图表清单
  • 注释表
  • 第一章 绪论
  • 1.1 研究背景
  • 1.2 本文的主要研究工作
  • 第二章 非定常不可压N-S方程的数值离散
  • 2.1 控制方程
  • 2.2 空间离散
  • 2.3 时间推进与预处理
  • 2.4 人工粘性
  • 2.5 边界条件
  • 2.6 小结
  • 第三章 IB点上流动变量的计算以及边界条件的嵌入
  • 3.1 网格点的分类
  • 3.2 虚拟点的确定及其流动变量的计算
  • 3.3 物面法线的确定
  • 3.4 IB点上流动变量值的计算
  • 3.5 小结
  • 第四章 "新现"网格点问题的处理以及网格点的高效分类
  • 4.1 动边界绕流计算时的"新现"网格点
  • 4.2 网格点的高效分类
  • 4.3 小结
  • 第五章 数值实验
  • 5.1 绕圆柱的数值模拟
  • 5.1.1 模拟绕固定圆柱的流动
  • 5.1.2 模拟静止流体中圆柱水平振荡运动
  • 5.1.3 模拟自由来流中圆柱垂直振荡运动
  • 5.2 绕翼型的数值模拟
  • 第六章 总结与展望
  • 6.1 本文主要工作
  • 6.2 本文方法特点
  • 6.3 进一步研究工作展望
  • 参考文献
  • 致谢
  • 在学期间的研究成果及发表的学术论文
  • 相关论文文献

    • [1].随钻正交方位电磁波三维有限体积法快速模拟(英文)[J]. Applied Geophysics 2020(02)
    • [2].时域有限体积法的格式稳定性分析[J]. 上海航天 2008(06)
    • [3].宏元技巧在有限体积法中的一个应用[J]. 湖南文理学院学报(自然科学版) 2018(03)
    • [4].混合网格和谐有限体积法[J]. 中国农村水利水电 2010(05)
    • [5].基于改进有限体积法的三维注塑成型充模过程数值模拟[J]. 机械工程学报 2015(10)
    • [6].二维不可压材料线弹性有限体积法的研究[J]. 四川大学学报(自然科学版) 2018(04)
    • [7].某汽轮机高压缸末级叶片流场有限体积法分析[J]. 电站系统工程 2014(01)
    • [8].采用有限体积法的特高压直流输电系统接地极稳态温度场仿真分析[J]. 高电压技术 2012(02)
    • [9].基于时域有限体积法的计算电磁[J]. 上海航天 2008(03)
    • [10].椭圆型方程问题的两套网格剖分的混合有限体积法[J]. 长春师范学院学报 2012(09)
    • [11].椭圆型方程问题的一套网格剖分的混合有限体积法[J]. 电脑知识与技术 2010(15)
    • [12].非结构有限体积法海洋模式垂向计算的一种改进方法[J]. 水动力学研究与进展A辑 2011(04)
    • [13].基于有限体积法的二维水流数学模型在桥梁防洪评价中的应用[J]. 中国水运(下半月) 2019(10)
    • [14].基于有限体积法的弹丸阻力系数数值模拟方法[J]. 探测与控制学报 2013(04)
    • [15].应用有限体积法求解均质油藏压力分布[J]. 内蒙古石油化工 2008(24)
    • [16].周期性边界下有限体积法与有限单元法导热问题对比研究[J]. 决策探索(中) 2017(08)
    • [17].全球非结构网格有限体积法海洋模式东中国海潮汐计算初步分析[J]. 上海海洋大学学报 2012(04)
    • [18].求解带有移动界面的线性对流方程的浸入界面有限体积法(英文)[J]. 应用数学 2018(03)
    • [19].二次有限体积法定价美式期权[J]. 计算数学 2015(01)
    • [20].基于有限体积法的二维大地电磁各向异性数值模拟[J]. 地球物理学报 2019(10)
    • [21].非线性有限体积法大旋转问题研究[J]. 哈尔滨工程大学学报 2018(06)
    • [22].基于有限体积法的裂缝性油藏两相流动模型[J]. 石油学报 2018(08)
    • [23].应用摄动有限体积法求解Navier-Stokes方程组[J]. 太原科技大学学报 2018(05)
    • [24].有限体积法定价欧式跳扩散期权模型[J]. 西南师范大学学报(自然科学版) 2018(11)
    • [25].基于通量非结构网格有限体积法的Level Set方程求解[J]. 工程数学学报 2013(04)
    • [26].有限体积法和有限元方法之间的比较[J]. 长春师范学院学报 2011(08)
    • [27].热障涂层活塞热应力分析的格点型有限体积法[J]. 哈尔滨工业大学学报 2016(07)
    • [28].基于非结构化网格同位有限体积法的粘弹流体数值模拟[J]. 高分子材料科学与工程 2009(09)
    • [29].有限体积法在二维水质模拟中的应用[J]. 才智 2008(09)
    • [30].一维土壤水分运动模型的有限体积法求解及其影响因素分析[J]. 水利规划与设计 2019(10)

    标签:;  ;  ;  ;  ;  

    一种有限体积边界嵌入法的研究及应用
    下载Doc文档

    猜你喜欢