论文摘要
piggyBac转座子是典型的DNA转座子,最初的序列在粉纹夜蛾(Trichoplusia ni)细胞系中分离(IFP2)。该转座子目前已经开发成为转基因昆虫中应用最为广泛的载体之一。虽然目前的研究工作已经表明,piggyBac广泛分布于各类生物的基因组中,但由于发生移码突变或者缺失而使绝大多数序列结构不完整,缺乏转座活性。此外,与mariner等其他转座子相比,piggyBac家族转座子的生物学以及分子进化研究仍然比较滞后,这种现状与piggyBac类转座子在转基因昆虫和基因分离、功能分析研究中的重要地位不相称。因此,本文对鳞翅目昆虫的13个科的41种昆虫展开了piggyBac类转座子分布的调查,对夜蛾中发现的转座子进行全长基因克隆,并对克隆获得的全长转座子进行了活性测定和互作亲和性分析,发现piggyBac转座子末端和亚末端反向重复序列都是活性自主转座子必需的元件。1鳞翅目昆虫piggyBac转座子的调查采用简并引物PCR和Southern点杂交技术筛查了鳞翅目的13个科,41种昆虫中piggyBac因子的分布情况。结果显示,夜蛾科的五种昆虫被检测到内源性piggyBac因子的存在。这五种昆虫分别是小地老虎(Agrotis ypsilon),银纹夜蛾(Argyrogrammaagnata),银锭夜蛾(或称为连纹夜蛾Macdunnoughia crassisigna),斜纹夜蛾(Spodoptera litura),瘦银锭夜蛾(Macdunoughia confusa)。从以上五种昆虫基因组中克隆获得的片断长350bp~380bp,经Blast比对和序列分析,它们彼此之间以及与IFP2序列的相似性均在57%~97%不等。2 piggyBac转座子全序列的克隆采用反向PCR和ITR PCR技术,从银锭夜蛾,小地老虎和银纹夜蛾三种昆虫中成功克隆到相应的piggyBac转座子全长,分别命名为McrPLE,AyPLE和AaPLE。McrPLE全长2472bp,编码595个氨基酸,与IFP2序列高度相似,一致性达99.5%。AyPLE1.1和AaPLE1.1分别编码完整的598和600个氨基酸的转座酶,两者之间的相似性为79%,它们与IFP2转座酶的相似性分别为59%和62%,属于IFP2中度相似序列。而AyPLE1.2和AaPLE1.2两个转座子序列均积累了较大的变异,不能编码完整转座酶蛋白。此外,AyPLE和AaPLE两类因子含有完全一致的反向末端重复序列,但都不存在亚末端反向重复。3 piggyBac转座子基因的系统进化分析收集了14种生物的25个piggyBac类似因子的氢基酸序列,利用CLUSTALX1.8和MEGA3.1构建亲缘关系树,进行系统进化分析。结果显示,进化树中piggyBac转座酶大致分为三大支,即CladeⅠ,CladeⅡ和CladeⅢ。这三大支中都既包含昆虫又包括哺乳动物的piggyBac因子。本文所克隆的McrPLE,AyPLE1.1和AaPLE1.1都出现在CladeⅠ中:McrPLE毗邻IFP2;AyPLE1.1,AaPLE1.1以及HaPLE1所在小分支与IFP2序列亲缘关系最为接近,靴值高达100%。根据以上的进化分析结果以及转座子序列结构特征推断,AyPLE1.1,AaPLE1.1以及HaPLE1因子很可能是同一类新发现的piggyBac亚家族成员。此外,进化树信息还显示不但在不同生物中可含有高度相似的piggyBac因子,而且转座子序列与宿主进化关系并不一致。以上结果揭示:piggyBac转座子的进化不仅仅遵循垂直遗传的规律,而且存在着生殖隔离物种间的水平转移机制。4三个piggyBac类似因子转座活性分析在果蝇S2细胞中建立起转座子活性检测系统,研究了piggyBac类似因子McrPLE,AaPLE1.1和AyPLE1.1的功能。结果表明,McrPLE不但能够在细胞中精确的剪切,而且能够准确地将KOα片段插入Target载体上的TTAA特异性位点。McrPLE因子的28个转座事件分布于Target载体上可插入位点的85位,101位,209位,363位,491位,603位,945位,992位和1863位,表现出插入位点的非特异性。AyPLE1.1的转座酶不能识别缺少亚末端重复序列的pHa[KOα]Donor载体,但可以准确剪切和转座另一个加入IFP2的亚末端反向重复的pHB[KOα]Donor载体。结果表明,AyPLE1.1转座酶是一个有功能的蛋白,并且亚末端反向重复序列在转座酶识别以及剪切反应中起着重要作用,一旦缺失就会严重影响转座子的功能。AaPLE1.1因子利用本研究采用的方法没有检测到活性检,还有待进一步研究。5 piggyBac因子相互作用初探利用果蝇S2细胞转化系统,研究了两类活性因子IFP2,McrPLE和AyPLE1.1之间互相识别和作用的关系。结果显示,两类转座酶表现出很强的专一性,均只能识别各自的反向末端重复序列。根据该研究结果推测,反向末端重复序列很可能是决定转座酶识别和作用专一性的重要序列,而亚末端反向重复则似乎没有种类的特异性。在剪切实验阴性对照中,偶然地发现pHB[KOα]Donor载体单独转染果蝇细胞48小时后能检测到不精确地剪切活动,该结果暗示着果蝇S2细胞中的某个未知因子能够与piggyBac转座子载体互相作用,并有待进一步的实验验证分析,对piggyBac转座子的转基因安全性做出评估和鉴定。综上所述,本研究调查了鳞翅目中41种昆虫内源性piggyBac转座子的分布情况,分离到一个IFP2高度相似的自主活性因子McrPLE,和一个编码活性转座酶的非自主因子AyPLE1.1。转座子互作研究表明,piggyBac转座子的末端和亚末端反向重复序列都是构成自主活性转座子的必要元件,其中末端反向重复很可能决定着转座酶识别和作用的专一性,而亚末端反向重复序列似乎没有种类的特异性。本文探索了在未知基因组生物中分离piggyBac转座子的方法,为其他生物中克隆转座子提供了可借鉴的手段;本研究深入了解了鳞翅目昆虫内源piggyBac转座子的分布,分子进化并探讨了内源性piggyBac转座子和外源IFP2载体的相互作用。本文研究成果为更好地设计piggyBac转基因载体以及为piggyBac载体的生物风险评估提供了理论依据,也为构建具有自主知识产权的昆虫转基因系统奠定了坚实的基础。