论文摘要
众所周知,关于一些著名和式的均值分布问题在解析数论研究中占有十分重要的地位,许多著名的难题都与之密切相关.因而在这一领域取得任何实质性进展都将有可能对解析数论的发展起到重要的推动作用!本文主要研究了数论中一些著名和式的均值估计问题,其中包括短区间上的特征和、带特征的二项指数和、Cochrane和、Kloosterman和以及它们的各种推广和式.此外,还研究了D.H.Lehmer问题、整数及其逆的推广等.具体说来,本文的主要成果包括以下几方面:1.短区间上特征和的高次均值研究.研究了短区间[1,(?))上特征和与广义二次Gauss和、广义Kloosterman和的混合均值,得到了几个渐近公式.2.超级Cochrane和的均值研究.研究了一种类似于Dedekind和的和式的高维形式——超级Cochrane和的均值性质,给出了其上界估计的一个推广;此外,还利用Gauss和与原特征的性质,以及Dirichlet L-函数的均值定理等研究了超级Cochrane和与超级Kloosterman和的混合均值.3.广义Kloosterman和的均值研究.研究了广义二次Kloosterman和、广义Bernoulli数以及Gauss和的混合均值,此外,还研究了广义二次Kloosterman和与L’/L(1,x)的混合均值,获得了几个有趣的结果;建立了r次超级Kloosterman和与D.H.Lehmer问题之间的一个联系.4.带特征的二项指数和的均值研究.研究了带特征的二项指数和、广义Bernoulli数以及Gauss和的混合均值,还研究了带特征的二项指数和与L’/L(1,x)的混合均值,并给出了几个渐近公式.5.整数及其逆的推广.关于整数及其逆分布问题的研究有助于我们深入了解整数分布的性质,本章利用高维Kloosterman和以及三角和估计研究了整数及其逆的高次形式的均值性质,得到了一个渐近公式;这一结果后来被Shparlinski加以推广和改进.