求解辐射输运问题的综合核方法

求解辐射输运问题的综合核方法

论文摘要

近年来,高温热系统中的辐射热输运问题受到广泛的关注。为了改善和提高许多热工程应用的方法和设计,要求对辐射热输运问题有更好的了解。因此,输运理论已经成为物理和工程应用的重要课题。一般来讲,对于实际问题,辐射输运方程的精确处理是非常困难的。介质中辐射输运方程的求解要求的是辐射输运方程的辐射强度,或者是积分辐射输运方程的辐射能量和辐射热流。为了求解这两种方程,发展了许多数值方法;然而,每种数值方法都有它自身的优点和缺点。综合核(Synthetic Kernel,SKN)方法是求解积分输运方程的高阶输运近似,它是用类扩散核的和来近似积分输运核,使积分方程简化为一组耦合的二阶微分方程。SKN方法第一次提出是用于求解中子积分输运方程,随后它成功地应用于一维和二维光学薄系统的均匀,非均匀,单群和多群常数源问题和本征值问题。到目前为止,SKN方法已经成功用于求解矩形,平几何,球几何,圆柱几何介质中的辐射输运问题。但是,SKN方法也存在着许多问题,例如,对于平几何情况,当平板厚度比较小和散射系数比较大时,综合核方法采用[0,1]上的高斯求积组的误差比较大,以及采用[0,1]上的高斯求积组时,综合核方法在低阶时收敛比较慢等。在调研国内外文献资料的基础上,推导了公式,编制了均匀、非均匀一维平几何、一维圆柱几何和二维圆柱几何的各向同性和线性各向异性散射的综合核(SKN)方法程序以及相应的离散纵标(SN)方法程序,计算了平几何和柱几何的辐射输运模型,并和文献资料结果进行了对比,验证了程序的正确性。然后,针对一维平几何的情况,采用数值方法分析了SKN方法的计算误差和收敛性,并提出了新的求积组Set-E1、Set-E2、Set-E3和误差修正方法来提高SKN方法的精度。对辐射能量的各向同性部分采用Set-E1、线性各向异性部分采用Set-E2,对辐射热流的各向同性部分采用Set-E2、各向异性部分采用Set-E3,并对各向同性的小厚度平板进行了全域误差修正、大厚度的平板进行了分段误差修正,计算了各向同性和线性各向异性散射均匀和非均匀平板介质中的几个辐射输运基准问题,并与精确解进行了比较。说明采用新的求积组并通过误差修正,SKN方法在低阶时就得到了很高精度的结果。本文分为五章,在介绍了选题背景和研究目标之后,给出一般形式的辐射输运方程,并推导了积分辐射输运方程;第三章推导了几种形式的SKN方程,提出了新的求积组,并分析了综合核方法的误差和收敛性;第四章给出了SKN方法的改进方法,并给出了几个基准问题的结果,可以看出综合核方法在低阶时就得到了很高精度的结果;第五章给出了结论和今后的工作方向。

论文目录

  • 目录
  • 摘要
  • Abstract
  • 第一章 绪言
  • 1.1 科研选题背景
  • 1.2 本文的工作
  • 参考文献
  • 第二章 辐射输运方程
  • 2.1 描述辐射场的物理量的定义
  • 2.2 辐射输运方程
  • 2.3 辐射输运的矩方程
  • 2.4 积分形式的辐射输运方程
  • 2.5 一维圆柱的辐射积分输运方程
  • 参考文献
  • 第三章 求解辐射输运问题的综合核方法
  • N方法的基本思想'>3.1 SKN方法的基本思想
  • N方法'>3.2 不同坐标系下的SKN方法
  • N方法'>3.2.1 一维平几何的SKN方法
  • N方法'>3.2.2 一维圆柱几何的SKN方法
  • N方法'>3.2.3 二维圆柱几何的SKN方法
  • 3.3 求积组的选取和误差分析
  • 参考文献
  • N方法的计算结果'>第四章 SKN方法的计算结果
  • N方法的计算结果'>4.1 一维平几何SKN方法的计算结果
  • N方法的计算方法'>4.1.1 一维平几何SKN方法的计算方法
  • 4.1.2 一维平几何的基准问题
  • N方法的计算时间'>4.1.3 一维平几何SKN方法的计算时间
  • 4.1.4 均匀一维平几何的计算结果
  • 4.1.5 非均匀一维平几何的计算结果
  • N方法的计算结果'>4.2 一维圆柱SKN方法的计算结果
  • N方法的计算方法'>4.2.1 一维圆柱SKN方法的计算方法
  • 4.2.2 一维圆柱的基准问题
  • 4.2.4 均匀一维圆柱的计算结果
  • 4.2.5 非均匀一维圆柱的计算结果
  • N方法的计算结果'>4.3 二维圆柱SKN方法的计算结果
  • N方法的计算方法'>4.3.1 二维圆柱SKN方法的计算方法
  • 4.3.2 二维圆柱的基准问题
  • 4.3.3 二维圆柱的计算结果
  • 参考文献
  • 第五章 结论与展望
  • 附录一 一些常用函数
  • 6.1 指数积分函数
  • 6.2 贝赛尔函数
  • 6.2.1 贝赛尔函数
  • 6.2.2 修正贝赛尔函数
  • 6.2.3 递推关系式及微分、积分关系
  • 6.2.4 近似表达式
  • 6.3 BICKLEY-NAYLER函数
  • 参考文献
  • N近似的计算方法'>附录二 SKN近似的计算方法
  • N近似的计算方法'>7.1 一维平几何SKN近似的计算方法
  • N近似的计算方法'>7.2 一维圆柱几何SKN近似的计算方法
  • N近似的计算方法'>7.3 二维圆柱几何SKN近似的计算方法
  • 硕士期间完成的论文
  • 致谢
  • 相关论文文献

    • [1].基于动边界微积分关系再论任意运动控制体的雷诺输运方程推导[J]. 力学与实践 2020(03)
    • [2].有限差分法在一维输运方程定解中的运用[J]. 廊坊师范学院学报(自然科学版) 2012(01)
    • [3].粒子输运方程的确定论计算方法[J]. 计算物理 2014(02)
    • [4].通过求解输运方程计算壁面距离[J]. 应用数学和力学 2011(02)
    • [5].输运方程特征值问题的高精度求积方法[J]. 高等学校计算数学学报 2010(01)
    • [6].求解二维粒子输运方程的CGS算法[J]. 价值工程 2018(03)
    • [7].二维输运方程高精度数值模拟[J]. 水科学进展 2012(03)
    • [8].输运方程中的散射相函数[J]. 南京邮电大学学报(自然科学版) 2009(02)
    • [9].复合白噪声驱动的输运方程[J]. 应用概率统计 2009(06)
    • [10].各向异性颗粒PDF输运方程及其颗粒湍流扩散(英文)[J]. 计算物理 2010(04)
    • [11].二维柱坐标系辐射输运方程保球对称的离散纵标格式[J]. 计算数学 2015(03)
    • [12].湍流燃烧的概率密度函数输运方程模型研究[J]. 飞航导弹 2010(05)
    • [13].基于有限差分法的一维输运方程定解问题[J]. 南昌教育学院学报 2011(11)
    • [14].基于FGM和附加输运方程的NO数值模拟方法研究[J]. 推进技术 2017(07)
    • [15].二维土壤溶质输运方程的CN广义差分法[J]. 内蒙古大学学报(自然科学版) 2014(01)
    • [16].演化问题的格林函数[J]. 阜阳师范学院学报(自然科学版) 2008(04)
    • [17].粒子输运方程的子网格平衡格式的稳定性和收敛性[J]. 计算数学 2015(04)
    • [18].一种求解输运方程的并行调度算法[J]. 计算机学报 2010(05)
    • [19].超临界条件下湍流时均化输运方程研究[J]. 核动力工程 2012(02)
    • [20].基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J]. 航空动力学报 2015(07)
    • [21].雷诺应力输运方程在圆柱坐标系下的数学方程推导形式研究[J]. 广东电力 2014(06)
    • [22].一维自旋极化输运方程的整体适定性[J]. 云南师范大学学报(自然科学版) 2009(04)
    • [23].基于输运方程类空化模型的通气空泡流数值模拟[J]. 力学季刊 2009(03)
    • [24].带有不连续系数的线性输运方程差分格式的收敛性[J]. 计算数学 2010(03)
    • [25].基于非充分掺混模式的流域来水组成模型[J]. 水科学进展 2008(01)
    • [26].有限差分法求解声子热输运方程[J]. 数值计算与计算机应用 2019(03)
    • [27].托卡马克等离子体密度梯度对边缘输运垒形成的作用[J]. 数理医药学杂志 2011(06)
    • [28].输运方程数值解法分析[J]. 文山学院学报 2013(03)
    • [29].两相湍流中颗粒矩拉格朗日方程可靠性的验证[J]. 杭州电子科技大学学报(自然科学版) 2014(06)
    • [30].一种实现边界条件与方程均齐次化的方法[J]. 大学物理 2013(03)

    标签:;  ;  ;  

    求解辐射输运问题的综合核方法
    下载Doc文档

    猜你喜欢