应用有效微生物技术处理垃圾渗滤液的实验研究

应用有效微生物技术处理垃圾渗滤液的实验研究

论文摘要

垃圾渗滤液是垃圾在堆放和填埋过程中,由于发酵和雨水的淋溶、冲刷,以及地表水和地下水的浸泡而过滤出来的污水,对周边环境及填埋场场底土层污染严重,且污染持续时间长,易引起二次污染。垃圾渗滤液是一种成份复杂的高浓度有机废水,不同的填埋场或同一填理场的不同时间段,渗滤液的水量水质都有不同的特点,因而处理难度较大。有效微生物(EM)技术作为废水处理领域新兴的技术,由于其独特的优越性和传统方法不可比拟的优点,在渗滤液处理中具有非常广阔的应用前景。论文以重庆市长生桥垃圾填埋场渗滤液为试验水样,采用Fenton法和磷酸铵镁沉淀(MAP)法对垃圾渗滤液进行联合预处理。在此基础上,通过利用有效微生物EM菌的生物多样性和综合效应开展处理垃圾渗滤液的探索性试验,即以EM菌剂为生物增强剂,利用生物强化技术与传统生物治理技术相结合的方式探索垃圾渗滤液深度处理的技术条件和处理方法,以此提高垃圾渗滤液的处理效率。Fenton法和MAP法联合预处理垃圾渗滤液的结果表明:Fenton试剂对有机物的降解破坏是非常有效的,但对NH3-N的去除效果并不令人满意;而化学沉淀法对废水中有机物的去除率并不高。采用Fenton法和MAP法联合预处理垃圾渗滤液能够弥补各自不足,具有较好的效果。Fenton法处理垃圾渗滤液的最佳操作条件为:初始pH=5,FeSO4·7H2O投加量0.05mol·L-1,反应时间3h,nH2O2: nFe2+=1: 1。MAP法在以MgO+Na2HPO4·12H2O为药剂,pH值8.5,反应时间1h时,Mg: N: P=1: 1: 0.7较适宜。在此操作条件下,经联合预处理后的原水COD由6455mg/L降到1300mg/L,去除率79.86%;NH3-N由1119 mg/L降到251mg/L,去除率77.57%;TP由20.55 mg/L降到2.1mg/L,去除率89.78%;BOD5/COD从0.2提高到0.5,明显改善了渗滤液的可生化性,有利于后续生物处理。Fenton法操作方便, MAP法形成的磷酸铵镁沉淀可以作缓释肥(SRFs)或用作结构制品的阻火剂,不会造成二次污染,可实现废物资源化。EM技术处理垃圾渗滤液的影响因素研究表明:EM中的有效微生物能够起到生物增强剂的作用,明显促进污染物的降解,对垃圾渗滤液中的COD、NH3-N、TP均有明显的去除效果。通过正交试验和单因素分析确定EM技术处理垃圾渗滤液的各因素适宜范围为:反应时间48 h~96 h,曝气时间为12h~36h,低流量间歇曝气,接种量(VEM: V水)为1/5000~1/1000,进水pH值7~8.5。EM处理垃圾渗滤液各因素的最佳水平组合为:反应时间48h,VEM: V水=1/2000,曝气时间12h,进水pH 8.5。EM技术与生物膜法相结合处理垃圾渗滤液的研究表明:以陶粒为填料的EM生物膜系统,能够为EM菌的生长繁殖提供良好的环境,EM生物膜系统启动时间为8~9d,大大缩短了系统的启动时间;COD、NH3-N和TP去除率分别达到80%以上。EM生物膜系统正式运行期,COD去除率在48h达到最大值84.65%,满足GB16889-1997生活垃圾填埋污染控制二级标准;NH3-N去除率在72h达到最大值81.09%,达到GB8978-1996污水综合排放二级标准;TP去除率48h后达78.85%时,出水浓度可以达到GB8978-1996污水综合排放一级标准。同单纯使用EM菌处理垃圾渗滤液相比,去除率均有较大幅度提高。EM技术处理垃圾渗滤液克服了以往渗滤液处理工艺中气味恶臭难闻的弊端;污泥产量小,避免了污泥处理带来的经济消耗和二次污染问题;处理后出水色度明显降低;避免了填料堵塞的问题;运行成本低,操作简便。

论文目录

  • 中文摘要
  • 英文摘要
  • 1 绪论
  • 1.1 概述
  • 1.2 研究目的和意义
  • 2 有效微生物技术在渗滤液处理中的应用与发展
  • 2.1 EM 技术简介
  • 2.1.1 EM 的组成及特点
  • 2.1.2 EM 处理废水的作用原理
  • 2.2 EM 技术在污水处理中的应用
  • 2.3 EM 技术在污水处理中的优势
  • 2.4 EM 技术的发展前景
  • 2.4.1 EM 的生产现状
  • 2.4.2 EM 技术的发展展望
  • 2.5 研究内容
  • 3 渗滤液预处理技术试验研究
  • 3.1 概述
  • 3.2 Fenton 法预处理渗滤液
  • 3.2.1 概述
  • 3.2.2 实验装置及材料
  • 3.3 MAP 法预处理垃圾渗滤液
  • 3.3.1 概述
  • 3.3.2 实验装置及材料
  • 3.3.3 实验方法
  • 3.3.4 结果与讨论
  • 3.4 Fenton 法和MAP 法联合处理效果
  • 3.5 本章小结
  • 4 EM 技术处理垃圾渗滤液的影响因素研究
  • 4.1 概述
  • 4.2 实验装置与材料
  • 4.3 实验方法
  • 4.4 结果与讨论
  • 4.4.1 正交试验的反应条件
  • 4.4.2 各因素对EM 作用效果的影响
  • 4.4.3 EM 技术优化条件选择
  • 4.5 本章小结
  • 5 EM 技术与生物膜法相结合处理垃圾渗滤液
  • 5.1 概述
  • 5.2 EM 技术与生物膜法结合处理渗滤液
  • 5.2.1 概述
  • 5.2.2 试验装置与材料
  • 5.2.3 试验方法
  • 5.2.4 结果与讨论
  • 5.3 本章小结
  • 6 结论与建议
  • 6.1 主要结论
  • 6.2 建议
  • 致谢
  • 参考文献
  • 附录
  • 相关论文文献

    • [1].垃圾渗滤液中砷的微波消解—石墨炉原子吸收光谱测定方法研究[J]. 环境污染与防治 2019(12)
    • [2].生活垃圾渗滤液金属污染物土柱模拟研究[J]. 环境科技 2019(06)
    • [3].纳滤技术在垃圾渗滤液深度处理中的运用探析[J]. 门窗 2019(20)
    • [4].红庙岭园区复杂地形下渗滤液管道的设计和应用[J]. 科学技术创新 2020(01)
    • [5].生活垃圾卫生填埋场渗滤液的控制及处理方案探讨[J]. 绿色环保建材 2020(02)
    • [6].垃圾渗滤液的处置及资源化利用现状[J]. 科技创新导报 2020(07)
    • [7].某渗滤液收集池底部防渗层鼓包的分析与治理[J]. 环境卫生工程 2020(03)
    • [8].渗滤液腐蚀黏土衬垫的力学特性及孔隙变化[J]. 环境科学与技术 2020(01)
    • [9].混合式蒸发在垃圾渗滤液零排放中的应用[J]. 资源节约与环保 2020(07)
    • [10].渗滤液应急服务新模式的探索[J]. 广东化工 2020(17)
    • [11].垃圾渗滤液的处置及资源化利用现状[J]. 资源节约与环保 2018(11)
    • [12].垃圾渗滤液对土壤微生物多样性的影响[J]. 天津工业大学学报 2017(01)
    • [13].膜技术处理垃圾渗滤液特性分析[J]. 化学工程与装备 2017(02)
    • [14].水处理药剂在垃圾渗滤液中的应用及发展方向[J]. 科技创新与应用 2017(07)
    • [15].城市生活垃圾卫生填埋场渗滤液导排系统布置与施工技术研究[J]. 中国战略新兴产业 2017(16)
    • [16].垃圾渗滤液氨氮出水水质偏高的影响因素及措施[J]. 当代化工研究 2017(04)
    • [17].臭氧高级氧化技术在垃圾渗滤液领域的应用研究[J]. 再生资源与循环经济 2017(07)
    • [18].应用超临界水气化技术的垃圾渗滤液资源化制氢技术研究[J]. 环境污染与防治 2017(08)
    • [19].电晕放电自由基簇射技术处理垃圾渗滤液的研究[J]. 科技通报 2017(08)
    • [20].垃圾渗滤液处置设备材质选择的研究[J]. 云南化工 2017(06)
    • [21].吸收光谱法评估垃圾渗滤液中有机质含量[J]. 中国给水排水 2017(10)
    • [22].微生物对垃圾渗滤液中胡敏酸降解和形成的影响[J]. 科技视界 2016(07)
    • [23].锯末吸附垃圾渗滤液中污染物质的效能分析[J]. 中国资源综合利用 2016(01)
    • [24].用光催化法处理垃圾渗滤液的研究[J]. 中小企业管理与科技(下旬刊) 2016(01)
    • [25].垃圾渗滤液特点及其处理初探[J]. 低碳世界 2016(11)
    • [26].城市污水混合垃圾渗滤液脱氮试验研究[J]. 科技传播 2016(11)
    • [27].垃圾渗滤液中有机污染物成分特征的研究进展[J]. 现代农业科技 2016(06)
    • [28].国内外垃圾渗滤液研究现状及未来展望[J]. 辽宁化工 2016(07)
    • [29].浅谈垃圾渗滤液的水质特征与处理工艺[J]. 广州化工 2016(13)
    • [30].垃圾渗滤液暴露对拟南芥的毒效应研究[J]. 农业环境科学学报 2016(08)

    标签:;  ;  ;  ;  

    应用有效微生物技术处理垃圾渗滤液的实验研究
    下载Doc文档

    猜你喜欢