论文摘要
随着微电子机械系统技术的迅速发展,微器件对许多领域的影响日趋明显,装置的微型化与微型系统已成为当今研究的重要课题。近几年发展起来的体积在1cm3量级上,能产生约10-100W功率的微型发动机已引起了世界各国的普遍关注。微型发动机具有能量密度高、寿命长、体积小、重量轻、结构简单等优点,将对微电子、信息、生物等各个行业产生巨大的积极影响。甲烷燃料容易获得、价格低廉,在未来数十年内将是微型气体发动机的主要燃料。微型燃烧器的尺寸较小、散热速率较大,使常规空间反应无法稳定进行,因此,有必要研究微型燃烧器内甲烷预混催化燃烧,为微型发动机碳氢燃料燃烧技术打下基础。微型燃烧器由四层不锈钢材料采用电火花技术加工而成,主要包括预混腔和燃烧腔两个腔室。采用连续介质层流有限速率模型二阶离散的方法,对三维微型燃烧器内各微小复杂流道内的催化燃烧、流动和传热进行了详细的数值模拟计算。研究了预混腔结构、甲烷质量流量、过量空气系数及壁面边界条件等因素对甲烷-空气混合物在微型燃烧器内催化燃烧的影响。数值模拟计算结果表明,气体流动为层流,催化燃烧主要在燃烧腔的下壁面进行,表面催化燃烧不同于常规燃烧,没有火焰区域,火焰的温度分布为层状。预混腔结构对预混效果有较大影响,但预混腔结构对甲烷转化率的影响不大。随着甲烷质量流量的增大,甲烷转化率减小,当壁面温度较低时,热负荷先增大后减小,当壁面温度较高时,热负荷增大。过量空气系数是微型燃烧器内催化燃烧的重要影响因素,甲烷转化率随过量空气系数的增大先增大后减小,存在一个最佳过量空气系数。当催化壁面温度增大时,最佳过量空气系数随之增大;当甲烷质量流量增大时,最佳过量空气系数随之减小。催化壁面温度是微型燃烧器内甲烷催化燃烧的主要影响因素。随着催化壁面温度的升高,催化反应速率增大,甲烷转化率迅速提高。当通入甲烷-氢气混合燃料时,混合气体中的氢气催化反应速率很快,在微型燃烧器燃烧腔内基本上完全反应。随着甲烷转变为氢气的百分数的增大,甲烷组分的转化率减小,甲烷-氢气整体转化率增大,热负荷迅速增大。