论文摘要
表面增强拉曼散射(SERS)效应可以使某些纳米结构表面的吸附物种的拉曼信号强度得到极大的增强。由此使得表面增强拉曼光谱成为一种超高灵敏度的表面检测谱学技术,成功地应用于电化学和分析科学等领域。然而,SERS研究的激发线几乎集中在可见光至近红外光的波长范围,若能将激发线拓宽至紫外光区,将对SERS的应用体系拓展和复杂机理揭示做出实质性的贡献。SERS效应高低与基底的纳米结构密切相关,迄今传统的SERS基底制备方法难以在多种金属体系获得UV-SERS活性。并且,由于目前拉曼谱仪在紫外光区的性能远低于可见光区(如光通量,CCD量子收集效率,透镜收集效率等),造成UV拉曼信号强度低,故大大限制了UV-SERS的发展。因此,本论文工作的重点是发展和优化UV-SERS活性基底,并利用UV-SERS研究一些重要体系的SERS机理。主要的创新点和成果有以下几点:(1)设计和制备具有高UV-SERS活性的纳米结构。利用电化学氧化还原循环法、纳米粒子(包括核壳结构粒子)合成法和聚苯乙烯球模板法,制备了不同的金属纳米结构,以DNA碱基腺嘌呤、SCN-为探针分子,首次获得了Pt、Pd、Co、Ni四种Ⅷ族过渡金属体系波长325 nm的紫外光激发下的UV-SERS效应。(2)研究了Pt和Pd纳米粒子的尺寸、形状和结晶度对UV-SERS效应的影响,提出良好的结晶度是激发纳米粒子的表面等离子体共振吸收(SPR)和提高UV-SERS活性的重要前提。(3)系统研究了波长对核壳结构纳米粒子增强效应的影响。通过比较可见和紫外光激发下,Au@Pd和Au@Pt核壳结构纳米粒子的增强效应与Pd或Pt壳厚度的关系,证明了币族金属Au和过渡金属Pd或Pt在可见和紫外光区具有不同的增强效应。可见光激发下,Au核对增强起主要贡献,而在紫外光激发下,增强的贡献皆来自于Pd或Pt壳。(4)具有可调SPR吸收且大面积形貌均匀的过渡金属纳米碗阵列的制备和UV-SERS研究。利用聚苯乙烯球模板法,电沉积了直径D在200 nm至900 nm、厚度在0.1 D-1.2 D范围内变化的纳米碗阵列。以腺嘌呤为探针分子,首次获得了Pt和Pd纳米碗的UV-SERS。UV-SERS增强效应与纳米碗的大小和深度密切相关,其中聚苯乙烯球直径200 nm,沉积厚度0.3 D的Pd纳米碗表现出最好的UV-SERS增强效应。(5) UV-SERS的电磁场增强机理研究。利用紫外-可见(反射)吸收谱研究了Pt和Pd纳米粒子和纳米碗的吸收特征,首次从实验上证实了Pt和Pd在紫外区有SPR吸收。通过对比分析UV-SERS信号强度与SPR吸收特征,发现两者之间存在较好的匹配关系,证明电磁场增强机理对Pt和Pd纳米结构的UV-SERS效应具有重要作用。(6)系统研究了腺嘌呤/金属体系的增强机理。通过改变激发光波长(325 nm、514.5 nm和632.8 nm)和电极电位,研究了腺嘌呤吸附在Rh和Pd电极上的电荷转移增强(CT)机理。观察到波长为325 nm的紫外激光所引起峰值电位的明显位移,以及峰值电位与激发光能量之间具有斜率为正的线性关系,说明CT机理对增强有贡献且电荷转移方向是从金属到分子。这一结果对理解腺嘌呤在Au或Ag的单分子SERS和TERS的巨大增强效应,具有重要的启示作用。另外,推断出该体系共存电荷转移增强、共振增强和电磁场增强三种增强作用。(7)利用SERS研究了电化学共吸附和表面取向问题。详细研究了质子化DNA碱基与ClO4-在金纳米粒子上的共吸附行为和质子化碱基间的氢键作用;观察到电极表面的吸附氢和氧对吡嗪在铑上取向改变具有较大影响,电位和浓度变化皆会引起的吸附取向的改变。综上所述,本论文工作成功地将UV-SERS拓宽到Pt、Pd、Co和Ni四种过渡金属体系,研究了表面等离子体共振吸收对过渡金属UV-SERS的重要贡献,并结合UV-SERS和Vis-SERS对腺嘌呤/Rh(Pd)体系的增强机理进行了系统研究,促进了UV-SERS研究的进展。最后应指出,如果拉曼谱仪及相关光学元件(如CCD收集效率、谱仪的光通量等)在紫外光区的性能能够达到目前可见光区的水平,对于同样的分子/金属体系,UV-SERS的信号甚至要强于Vis-SERS。这预示着UV-SERS还有很大的发展潜力,随着拉曼谱仪和各种光学元件在紫外光区性能的改进,以及制备具有更高UV-SERS活性的纳米结构,UV-SERS以及UV-SERRS将在不远的将来得到广泛应用。
论文目录
相关论文文献
- [1].鼻咽癌细胞组织与血液的SERS光谱研究进展[J]. 激光生物学报 2019(06)
- [2].新型烛煤超疏水界面辅助的干态SERS快检技术及其应用[J]. 光散射学报 2019(04)
- [3].细胞氧化应激过程中几种关键分子的SERS检测方法[J]. 光散射学报 2019(04)
- [4].Preparation and application of microfluidic SERS substrate:Challenges and future perspectives[J]. Journal of Materials Science & Technology 2020(02)
- [5].基于SERS光谱技术的甲胎蛋白超灵敏定量检测[J]. 中国激光 2020(02)
- [6].Rapid ultrasensitive monitoring the single-particle surface-enhanced Raman scattering (SERS) using a dark-field microspectroscopy assisted system[J]. Chinese Chemical Letters 2020(02)
- [7].SERS的煎炸食品中丙烯酰胺速测方法研究[J]. 光谱学与光谱分析 2020(04)
- [8].表面增强拉曼散射及其应用进展[J]. 激光杂志 2020(04)
- [9].介孔硅包金棒多聚体的制备及其对塑化剂的SERS检测[J]. 应用化工 2020(06)
- [10].拓展表面增强拉曼光谱普适性的研究进展[J]. 厦门大学学报(自然科学版) 2020(05)
- [11].环境雌激素SERS检测的研究进展[J]. 光谱学与光谱分析 2020(10)
- [12].利用表面增强拉曼光谱(SERS)技术快速检测水与尿液中舒芬太尼的研究[J]. 分析测试学报 2020(09)
- [13].SERS技术在火灾物证鉴定中的应用与展望[J]. 消防科学与技术 2018(11)
- [14].氧化作用对于贵金属SERS性能的影响研究[J]. 科学技术创新 2019(11)
- [15].Applications of magnetic nanoparticles in surface-enhanced Raman scattering(SERS)detection of environmental pollutants[J]. Journal of Environmental Sciences 2019(06)
- [16].Versatile metal graphitic nanocapsules for SERS bioanalysis[J]. Chinese Chemical Letters 2019(09)
- [17].Design of SERS nanoprobes for Raman imaging:materials, critical factors and architectures[J]. Acta Pharmaceutica Sinica B 2018(03)
- [18].湿度响应纳米复合材料的组装及其SERS传感器应用(英文)[J]. Science China Materials 2018(09)
- [19].基于SERS技术快速实现现场毒品检测[J]. 光散射学报 2016(04)
- [20].Multidimensional Co_3O_4 nano sponge for the highly sensitive SERS applications[J]. Optoelectronics Letters 2017(01)
- [21].鸭肉中强力霉素残留的SERS快速检测[J]. 现代食品科技 2017(02)
- [22].半导体纳米粒子SERS基底对大肠杆菌的无损检测研究[J]. 光谱学与光谱分析 2017(05)
- [23].鸭肉中环丙沙星残留的表面增强拉曼光谱测定[J]. 分析测试学报 2017(05)
- [24].SERS免疫检测探针的设计与制备[J]. 吉林师范大学学报(自然科学版) 2017(03)
- [25].表面增强拉曼光谱法测定鸭肉中替米考星残留[J]. 分析试验室 2017(08)
- [26].鸭肉中吉他霉素残留的SERS测定[J]. 食品与机械 2017(06)
- [27].SERS传感器间接检测蛋白质的研究进展[J]. 光谱学与光谱分析 2017(10)
- [28].SERS检测三聚氰胺的不确定度分析[J]. 食品研究与开发 2017(19)
- [29].基于SERS技术检测牛奶中氨苄西林的研究[J]. 中国抗生素杂志 2017(09)
- [30].磁核枝杈状金壳纳米颗粒的制备及其在肿瘤核酸标志物SERS检测中的应用研究(英文)[J]. Science China Materials 2017(11)
标签:表面增强拉曼光谱论文; 紫外光激发论文; 电化学论文; 电荷转移增强机理论文; 表面等离子体共振吸收论文; 核壳纳米粒子论文; 腺嘌呤论文;