基于视觉信息的微小型无人直升机地标识别与位姿估计研究

基于视觉信息的微小型无人直升机地标识别与位姿估计研究

论文摘要

微小型无人直升机在军事和民用方面都具有广泛的应用价值,近十年以来一直都是国内外很多机构和组织的研究对象。其中,导航与控制是微小型无人直升机研究的核心。视觉导航是微小型无人直升机先进的导航方式之一。与传统的惯性导航方式相比,它具有成本低,硬件实现简单,信息量大等优势。周围环境感知和自身位姿估计是实现微小型无人直升机视觉导航的基本要求,而地标识别是周围环境感知的主要手段之一。本文针对微小型无人直升机基于视觉信息的地标识别和自身位姿估计展开研究,主要工作如下:1)介绍了课题的研究背景和研究内容,指出了研究难点。随后,综述了基于视觉信息的地标识别和直升机位姿估计的相关技术方法,分别对这些方法进行分类和比较,并指出其优点和不足之处。2)将现有的一种基于Adaboost图像识别算法进行改进,提出一种适合于微小型无人直升机对地标多角度观测的实时识别算法。其中,串联结构的分类器框架保证了识别算法的实时性。同时,将串联分类器的前端作为地标旋转姿态的估计器,在不增加算法额外运算开销的情况下提高了整个算法的效率。最后使用微小型无人直升机对5种不同的地标进行了实时地标识别实验。实验结果证明,在训练样本足够多的前提下,该方法无论从识别准确性还是实时性都明显优于传统的基于空间模版匹配的地标识别算法。3)样本的获取和选择对于基于Adaboost的地标识别方法至关重要。但是,由于微小型无人直升机独特的飞行状态和飞行危险性,获取足够多真实地标图像作为训练样本是非常困难的。针对这个问题,论文在分析Boosting系列算法与前向分布加法模型之问关系的基础上,对基于Adaboost的地标识别方法进一步改进,提出了基于嵌入先验知识Boosting算法的微小型无人直升机地标识别方法。在地标识别过程中,由于使用了先验知识,从而有效弥补了训练样本不足带来的缺陷。通过真实的对比实验验证了在稀少样本情况下,该方法比完全数据驱动的基于Adaboost地标识别算法性能更好。4)建立了直升机机载摄像机运动和投影模型,并在此模型基础上提出了一种基于特定人工地标图像信息的微小型无人直升机位姿估计方法。在这在种方法中采用了快速SUSAN角点检测算法来稳定快速地提取匹配特征点,并且使用了Levenberg-Marquardt算法以求稳定估计直升机位姿参数。最后,在一架真实微小型无人直升机上成功实现了该位姿估计方法。5)在分析序列图像信息与直升机运动关系的基础上,提出一种基于图像序列信息的微小型无人直升机位姿估计方法。重点设计了基于SIFT特征的序列图像之间的匹配点和一套基于RANSAC算法的匹配点选择策略。最后在一架真实的微小型无人直升机上的实验验证了该位姿估计方法的有效性。论文最后对所有的工作做了总结,并对未来研究做了展望。

论文目录

  • 摘要
  • ABSTRACT
  • 致谢
  • 第1章 绪论
  • 1.1 研究背景和意义
  • 1.2 微小型无人直升机主要研究内容
  • 1.2.1 微小型无人直升机建模技术
  • 1.2.2 微小型无人直升机飞行控制技术
  • 1.2.3 微小型无人直升机传感器技术
  • 1.2.4 微小型无人直升机空间避障与路径规划研究
  • 1.2.5 微小型无人直升机视觉系统
  • 1.3 微小型无人直升机国内外研究现状
  • 1.4 本文主要研究内容
  • 第2章 基于视觉信息的微小型无人直升机地标识别与位姿估计技术回顾
  • 2.1 基于视觉信息的微小型无人直升机地标识别技术回顾
  • 2.1.1 地标自动识别技术难点
  • 2.1.2 基于空间模板匹配的识别方法
  • 2.1.3 基于统计模式识别的识别方法
  • 2.1.4 结束语
  • 2.2 基于视觉信息的微小型无人直升机位姿估计技术难点
  • 2.2.1 基于投影关系的方法
  • 2.2.2 基于模式识别的方法
  • 2.2.3 基于多传感器信息融合的方法
  • 2.2.4 基于序列图像的方法
  • 2.2.5 结束语
  • 2.3 本章小结
  • 第3章 基于串联结构分类器的地标实时识别
  • 3.1 引言
  • 3.2 地标实时识别算法框架
  • 3.3 地标图像预处理
  • 3.4 特征提取
  • 3.5 分类器设计
  • 3.5.1 Adaboost算法
  • 3.5.2 串联结构分类器
  • 3.5.3 地标旋转姿态估计
  • 3.5.4 地标图像的旋转“纠正”和深层次检测
  • 3.6 实验
  • 3.6.1 实验设计
  • 3.6.2 实验结果
  • 3.6.3 实验结果分析
  • 3.7 本章小结
  • 第4章 基于嵌入先验知识 BOOSTING算法的地标识别
  • 4.1 引言
  • 4.2 从统计学习角度分析Boosting系列算法
  • 4.3 嵌入先验知识的Boosting系列算法
  • 4.4 嵌入先验知识Boosting算法在地标识别中的应用
  • 4.4.1 特征选择
  • 4.4.2 弱分类器设计
  • 4.4.3 先验知识建模
  • 4.5 实验
  • 4.5.1 实验平台
  • 4.5.2 实验结果与分析
  • 4.6 本章小结
  • 第5章 基于人工地标图像信息的微小型无人直升机位姿估计
  • 5.1 引言
  • 5.2 相关基础知识
  • 5.2.1 几何学基础知识
  • 5.2.2 计算机视觉中的坐标系
  • 5.2.3 针孔摄像机模型
  • 5.2.4 惯性导航坐标系
  • 5.3 直升机的位姿表示
  • 5.4 机载摄像机运动和投影模型
  • 5.5 人工地标设计与匹配特征选择
  • 5.5.1 人工地标设计
  • 5.5.2 特征点提取
  • 5.6 基于Levenberg-Marquardt的位姿参数估计算法
  • 5.7 实验
  • 5.7.1 实验平台
  • 5.7.2 实验设计与结果
  • 5.8 本章小结
  • 第6章 基于序列图像信息的微小型无人直升机位姿估计
  • 6.1 引言
  • 6.2 航拍序列图像信息与直升机位姿关系
  • 6.2.1 序列图像信息的直升机运动关系模型
  • 6.2.2 观测图像序列相关单应矩阵求解
  • 6.3 航拍图像序列相关单应矩阵估计
  • 6.3.1 基于 SIFT特征的匹配点
  • 6.3.2 基于 RANSAC的匹配点挑选
  • 6.4 实验
  • 6.4.1 实验设计
  • 6.4.2 实验结果与分析
  • 6.5 本章小结
  • 第7章 总结与展望
  • 7.1 工作总结
  • 7.2 研究展望
  • 参考文献
  • 攻读学位期间科研成果
  • 相关论文文献

    • [1].我国最大无人直升机首飞成功[J]. 广东交通 2011(03)
    • [2].国外海军无人直升机发展现状分析[J]. 军民两用技术与产品 2019(11)
    • [3].共轴双桨式无人直升机维护维修经验探索[J]. 科学技术创新 2020(06)
    • [4].小型无人直升机模型辨识数据处理方法研究[J]. 计算机测量与控制 2020(05)
    • [5].我国首型高原型无人直升机成功首飞[J]. 空运商务 2020(05)
    • [6].基于正规化设计的无人直升机的模糊非脆弱控制[J]. 电光与控制 2020(08)
    • [7].军用无人直升机及其动力装置分析[J]. 航空动力 2020(04)
    • [8].某农用型无人直升机喷药系统设计与实现[J]. 电子测试 2018(23)
    • [9].舰载无人直升机自主着舰方法研究[J]. 舰船科学技术 2019(05)
    • [10].无人直升机加装任务系统发展现状与趋势[J]. 科技视界 2019(09)
    • [11].无人直升机自动起降控制及试飞验证[J]. 电子技术与软件工程 2019(10)
    • [12].自检技术在无人直升机中的应用[J]. 信息通信 2019(05)
    • [13].基于任务的舰载无人直升机作战效能分析[J]. 直升机技术 2019(04)
    • [14].基于H_∞回路成形的无人直升机动态逆控制研究[J]. 飞行力学 2019(06)
    • [15].一种小型无人直升机动力学模型参数辨识方法[J]. 飞行力学 2019(06)
    • [16].无人直升机运动目标跟踪控制系统设计[J]. 电气传动 2019(11)
    • [17].无人直升机发展现状及技术难点[J]. 计算机产品与流通 2018(01)
    • [18].小型无人直升机电力巡检仿真环境设计与实现[J]. 计算机与数字工程 2018(09)
    • [19].舰载无人直升机的现状和应用展望[J]. 舰船电子工程 2016(12)
    • [20].一种小型无人直升机轨迹跟踪控制方法[J]. 计算机仿真 2016(11)
    • [21].无人直升机多功能离合器设计与试验[J]. 传动技术 2017(01)
    • [22].舰载无人直升机着舰控制引导系统[J]. 飞航导弹 2017(05)
    • [23].小型无人直升机的飞行控制系统[J]. 电子技术与软件工程 2017(07)
    • [24].微型无人直升机的发展及应用[J]. 中国科技信息 2017(17)
    • [25].为了无人直升机飞得更稳[J]. 中国军转民 2016(03)
    • [26].农用植保无人直升机高精度高度控制技术研究[J]. 航空计算技术 2016(02)
    • [27].军用无人直升机发展现状及运用研究进展[J]. 长沙航空职业技术学院学报 2014(04)
    • [28].再用10年成为全球无人直升机领导者[J]. 大学生 2020(06)
    • [29].小型无人直升机动力学建模的子空间辨识方法[J]. 科学家 2017(04)
    • [30].王吉东:不灭的航空梦[J]. 科学中国人 2017(10)

    标签:;  ;  ;  ;  

    基于视觉信息的微小型无人直升机地标识别与位姿估计研究
    下载Doc文档

    猜你喜欢