静态EMDA黑洞对Dirac粒子和标量粒子的吸收截面

静态EMDA黑洞对Dirac粒子和标量粒子的吸收截面

论文摘要

黑洞时空中粒子的散射与吸收的研究对我们了解黑洞的信息至关重要。黑洞对量子波的吸收与散射的研究兴起于二十世纪七十年代,近年来,弦理论的研究热潮,使人们对由弦理论得到的黑洞及高维黑洞的吸收截面的研究产生了极大的兴趣。弦理论是目前能够将引力量子化,并能解释宇宙起源与运行以及现代物理中很多难题的理论。由弦理论得到的伸缩子黑洞时空有着与通常广义相对论中的黑洞时空不一样的性质,其原因在于伸缩子的存在。因此,多年来人们对伸缩子时空的各种研究极为关注。研究伸缩子时空的吸收与散射对于黑洞物理、弦理论及相关理论都是有意义的。本文采用Unruh计算吸收截面的方法,对静态爱因斯坦-麦克斯韦伸缩子黑洞时空中的Dirac粒子和标量粒子的吸收截面进行了解析计算。利用波函数的连续性和渐近展开方法求解了视界附近、中间区域及远离视界处的波动方程。计算表明,静态EMDA黑洞中低能条件下标量粒子的吸收截面为2M(2M-2D2(2π)2(1+υ)2ω/υ2(1-exp[-π(2M-2D)ω(1+υ2)/υ])。当υ≥2πMm时,标量粒子的吸收截面为16πM(M-D)/υ,此时吸收截面是υ的函数,并且随υ的增大而减小。伸缩子参数D对吸收截面的影响显著,吸收截面随伸缩子D的绝对值的增大而减小。而无质量标量粒子的吸收截面为8πM(2M-2D),这恰好等于静态EMDA黑洞的视界面积。我们知道球对称Schwarzschild黑洞对无质量标量粒子吸收截面等于其黑洞的视界面积。我们的结果表明,对于EMDA黑洞这个结论仍然成立。我们还采用计算标量粒子吸收截面类似的方法计算了Dirac粒子的吸收截面。结果表明,Dirac粒子的吸收截面与标量粒子的吸收截面比值恰好为1/8,这与Schwarzschild时空中的结论完全一样。

论文目录

  • 中文摘要
  • 英文摘要
  • 第一章 绪论
  • §1.1 黑洞
  • §1.2 粒子的散射与吸收
  • 第二章 粒子的吸收截面的研究成果及现状
  • §2.1 Schwarzschild时空
  • §2.2 Reissner-Nordstrom时空
  • §2.3 4+n维Schwarzschild时空
  • §2.4 4+n维Reissner-Nordstrom时空
  • 第三章 静态爱因斯坦-麦克斯韦伸缩子黑洞对标量粒子的吸收截面
  • §3.1 静态EMDA时空中的标量粒子的径向方程
  • §3.2 灰体因子Γ(l)的确定
  • §3.3 吸收截面
  • §3.4 小结
  • 第四章 静态爱因斯坦-麦克斯韦伸缩子黑洞对Dirac粒子的吸收截面
  • §4.1 静态EMDA时空中的Dirac粒子的径向方程
  • §4.2 灰体因子Γ(l)的确定
  • §4.3 吸收截面
  • §4.4 小结
  • 第五章 总结与展望
  • 参考文献
  • 攻读硕士学位期间完成的论文
  • 致谢
  • 相关论文文献

    • [1].Large linear magnetoresistance in a new Dirac material BaMnBi_2[J]. Chinese Physics B 2016(10)
    • [2].Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chinese Physics Letters 2019(03)
    • [3].Dirac Oscillator Under the New Generalized Uncertainty Principle From the Concept Doubly Special Relativity[J]. Communications in Theoretical Physics 2019(11)
    • [4].Wave Functions for Time-Dependent Dirac Equation under GUP[J]. Communications in Theoretical Physics 2018(04)
    • [5].Structural and electrical transport properties of Dirac-like semimetal PdSn_4 under high pressure[J]. Chinese Physics B 2019(12)
    • [6].Pressure-induced Lifshitz transition in the type Ⅱ Dirac semimetal PtTe_2[J]. Science China(Physics,Mechanics & Astronomy) 2019(04)
    • [7].Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe_5[J]. Chinese Physics Letters 2019(06)
    • [8].Dirac Quasinormal Modes of Static f(R) de Sitter Black Holes[J]. Communications in Theoretical Physics 2018(02)
    • [9].Quantum transport properties of the three-dimensional Dirac semimetal Cd_3As_2 single crystals[J]. Chinese Physics B 2016(11)
    • [10].Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential[J]. Communications in Theoretical Physics 2015(09)
    • [11].Spin and pseudospin symmetries of the Dirac equation with shifted Hulthe′n potential using supersymmetric quantum mechanics[J]. Chinese Physics B 2013(12)
    • [12].Solution of Dirac Equation with Generalized Hylleraas Potential[J]. Communications in Theoretical Physics 2013(03)
    • [13].Dirac cohomology and Dirac induction[J]. Science China(Mathematics) 2011(11)
    • [14].Spin symmetric solutions of Dirac equation with Pschl-Teller potential[J]. Chinese Physics B 2011(07)
    • [15].Dirac协变导数的扩展[J]. 科协论坛(下半月) 2010(04)
    • [16].非线性Dirac系统的n-孤波解[J]. 科技信息 2009(09)
    • [17].一维奇型Dirac算式自伴域的刻画[J]. 江苏科技大学学报(自然科学版) 2009(05)
    • [18].利用弦链系统模拟量子力学中的Dirac梳[J]. 物理实验 2017(01)
    • [19].The Brio System with Initial Conditions Involving Dirac Masses: A Result Afforded by a Distributional Product[J]. Chinese Annals of Mathematics(Series B) 2014(06)
    • [20].Arbitrary-state solutions of the Dirac equation for a Mbius square potential using the Nikiforov-Uvarov method[J]. Chinese Physics C 2013(04)
    • [21].Solution of Dirac Equation with Killingbeck Potential by Using Wave Function Ansatz Method under Spin Symmetry Limit[J]. Communications in Theoretical Physics 2011(01)
    • [22].Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS[J]. Chinese Physics B 2018(01)
    • [23].Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd_3As_2[J]. Chinese Physics B 2016(01)
    • [24].Trace Formulae for the Nonlinearization of Periodic Finite-Bands Dirac Spectral Problem[J]. Journal of Mathematical Research with Applications 2016(02)
    • [25].Disappearance of the Dirac cone in silicene due to the presence of an electric field[J]. Chinese Physics B 2014(03)
    • [26].Dirac Particles' Tunneling Radiation from Dilaton Space-time with Squashed Horizons[J]. Communications in Theoretical Physics 2011(12)
    • [27].Dirac Equation with a New Tensor Interaction under Spin and Pseudospin Symmetries[J]. Communications in Theoretical Physics 2018(09)
    • [28].Electron transport in Dirac and Weyl semimetals[J]. Chinese Physics B 2018(10)
    • [29].Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chinese Physics Letters 2017(06)
    • [30].Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na_3Bi from angle-resolved photoemission spectroscopy[J]. Chinese Physics B 2016(07)

    标签:;  ;  ;  ;  

    静态EMDA黑洞对Dirac粒子和标量粒子的吸收截面
    下载Doc文档

    猜你喜欢