论文摘要
光功能材料就是在外场(如光、电、磁、热等)作用下,利用材料本身光学性质发生变化的原理,实现对入射光信号的探测、调制以及能量或频率转换作用的光学材料。其中,有机发光材料由于种类繁多、性质多样、应用广泛成为近年来的研究热点。从传统的光致发光领域到新兴的电致发光领域的研究及应用中,有机发光材料无不发挥着重要的作用,特别是含氮原子的杂环化合物更是在其中扮演着重要的角色。在本论文中设计、合成了一系列新颖的含氮原子的杂环荧光化合物,考察了其光学、热学、电化学性质特点,根据结构特征分别研究开发他们在荧光探针领域(镉离子荧光探针、汞离子荧光探针)及有机电致发光器件领域(电子传输材料、发光材料)的应用。设计合成了十三个未见报道的基于1,8-萘啶荧光团的新型1,8-萘啶衍生物。D2分子是首个报道的基于1,8-萘啶荧光团,通过正向协同作用以双核配位形式对镉离子进行识别的分子荧光探针。D2与镉离子结合后荧光强度变化明显,荧光强度增加至初始强度的三倍,波长红移35nm,溶液颜色从蓝色变成绿色,便于可视检测。设计合成了一种未见报道的利用双荧光团(1,8-萘啶和1,8-萘酰亚胺)的共振能量转移机理(FRET)及分子内光诱导电子转移(PET)共同作用的分子荧光探针(HA-1)。光谱研究表明,化合物HA-1可以通过抑制PET使荧光增强的方式选择性识别汞离子。当利用供体荧光团(1,8-萘啶)的激发波长对化合物进行激发时,化合物出现供体和受体双荧光峰的现象。结合汞离子之后,受体荧光峰强度增强为初始强度的3.5倍,具有典型的双波长比率荧光探针的光谱特征,使汞离子识别信号的表达方式更加丰富。设计合成了六种未见报道的基于氮—氮配体的新型氟—硼配合物(BN1-BN6)。通过对化合物BN1-BN5的晶体中氢键的构成及分子堆积特点分析后,认为硼原子有效的提高了与之相连的氟原子的电子接受能力,使B-F键成为比C-F更强的电子受体基团。化合物BN1和BN2在具有良好溶液荧光性质的同时,与氟硼吡咯相比,固体荧光强度显著增强;LUMO轨道能级低于目前普遍应用的电子传输材料8-羟基喹啉铝(<-3.0eV),具有良好的电子接受能力,可作为新型的电子传输材料应用于有机电致发光器件中。利用物理气相沉积法,制备得到化合物BN3均匀致密的薄膜,为后续其他氟硼化合物薄膜的制备提供了宝贵的经验。研究了化合物BN5在光照条件下发生[2+2]二聚反应,探索反应机理及氟硼基团在该反应进行中的贡献及作用。设计合成了七种未见报道的基于氮—氧配体的新型氟—硼配合物(BO1-BO7)。通过乙醚扩散法制备得到五种化合物的晶体,对其中的氢键构成及分子堆积特点进行了分析。化合物BO1-BO5固体和液体荧光强度均较弱,但LUMO能级低于目前广泛应用的8-羟基喹啉铝,普遍具备作为电子传输材料的特点。BO1分子已经成功的作为电子传输材料应用于多层太阳能电池中,并显示了良好的电子传输能力和稳定的光电转化效率。同分异构体BO6和BO7充分利用了BODIPY类化合物的分子优势,结合D-A类化合物的结构特征,通过合理的分子设计使分子内存在双极特征,使化合物同时实现强固体及液体荧光,并导致化合物斯托克斯位移显著增大,其中BO6在乙腈中斯托克斯位移为197nm,BO7在甲醇中斯托克斯位移为93nm。两化合物具有较低的LUMO能级(<-3.0eV)和较高的HOMO能级(>-5.4eV),具有良好的电子接收及传输能力,是多功能的荧光分子,可应用于电致发光领域。