论文摘要
多环芳烃(PAHs)是一类广泛分布于海洋环境中的典型的持久性有机污染物(POPs),通过食物链的传递会对生态环境和人体健康造成极大危害。了解PAHs在环境中的来源、分布、归宿及去除问题,已成为当今环境科学研究的前沿课题。生物降解是环境(土壤,沉积物,水体)中PAHs去除的最主要途径。研究其遗传控制方式,探索代谢途径,是为了更好地将降解菌应用于有效而可控的生物修复之中。本论文将采集自厦门博坦油码头的海水样品,在持续性的高浓度、高分子量PAHs选择压力下进行富集驯化,获得高分子量PAHs的降解混合菌系,并以此讨论高分子量多环芳烃(HMW-PAHs)降解菌的筛选策略;同时对筛选获得的2株能高效降解PAHs的细菌从生理生化角度、基因组学、蛋白质组学方面进行较为系统的研究,探讨其降解特性,解析相关功能基因及功能酶,并在这些基础上推测其代谢途径。获得的主要结果如下:1.用高浓度(1000 mg/L),混合PAHs(菲,芘,荧蒽,苯并(a)芘)作为选择压力,从采自石油污染地区样品中驯化获得混合降解菌系,从中分离得到3株可培养单菌,变性梯度凝胶电泳(PCR—DGGE)跟踪分析驯化过程中的细菌群落结构变化及优势菌形成过程。采用高效液相色谱(HPLC)测定混合菌系BL和3株单菌BL01,BL02,BL03对高分子量、难降解的PAH——苯并(a)芘的降解能力,结合DGGE结果分析菌系中各单菌在降解过程中的作用。结果显示BL02,BL03不具有降解BaP的能力,BL01 14 d后降解了20.98%,三菌混合培养物降解了22.61%;而混合菌系BL 14天后降解了44.07%的BaP,这在同类报道中处于较高水平,显示了BL对BaP有较好的降解能力。该筛选策略有助于关注那些未可培养细菌在HMW-PAHs降解中的作用,因此采用高浓度、高分子量PAHs的选择压力筛选HMW-PAHs的降解菌是一种快速而行之有效的筛选策略。2.对采自厦门海域的水样和沉积物样品,经过一定时间的PAHs富集培养之后,采用改良的平板升华法成功地筛选到两株菲高效降解菌,降解能力测定显示,它们都能以菲和荧蒽作为唯一碳源生长,72 h后均能完全降解起始浓度为100mg/L的菲。16S rDNA鉴定结果显示这两株分别为鞘氨醇单胞菌Sphingomonas sp.B2-7和分支杆菌Mycobacterium sp.S8。3.通过降解菌对芳香烃化合物和PAHs降解过程中常见中间产物的利用情况,菌株B2-7能利用水杨酸,2—萘酚,邻苯二酚,初步推测它以水杨酸途径代谢菲,菌株S8不能降解萘,能利用原儿茶酸,但是不能利用邻苯二甲酸,很可能是以邻苯二甲酸以外的途径代谢菲。降解菌降解荧蒽的优化条件实验结果显示,非离子表面活性剂Tween-80和营养物葡萄糖能促进菌株B2-7和S8对荧蒽的降解。4.芳环羟基化双加氧酶和芳环断裂双加氧酶是PAHs降解过程中开环的两种关键酶,其中环羟基化双加氧酶(RHDs)控制苯环加氧,是微生物降解反应的限速步骤,邻苯二酚双加氧酶是催化苯环开裂的重要酶。我们通过引物设计的方法,从降解菌Sphingomonas sp.B2-7中扩增得到全长的邻苯二酚-2,3-双加氧酶基因(C23O)和环羟基化双加氧酶大亚基(phnA),从分子生物学角度证明了PAHs降解过程中的重要酶系邻苯二酚-2,3-双加氧酶(C23O)和环羟化双加氧酶基因α亚基(phnA)在菌株B2-7中的存在。对phnA基因构建了重组表达载体,成功在表达宿主大肠杆菌E.coli BL21(DE3)中进行表达,基因在宿主中以溶解蛋白形式存在。可以进一步推断菌株B2-7降解菲的基本途径是RHDs氧化PAHs形成二氢二醇PAHs化合物,再在C23O的作用下经由水杨酸途径间位裂解(meta-cleavage)苯环,生成2-羟基粘康酸半醛(2-HMS)。5.采用1-DE(一向凝胶电泳)和2-DE(双向凝胶电泳)结合LC-MS/MS(串联质谱),研究菌株B2-7在菲诱导与无菲诱导(对照)状况下的蛋白质表达,对差异蛋白的生物质谱结果进行分析,得到多个代谢途径中的关键酶(加氧酶、脱氢酶、醛缩酶等),结合菌株B2-7的降解特性与降解基因的研究结果,最终推导出菌株B2-7降解菲较为完整的代谢途径。
论文目录
相关论文文献
- [1].聚乳酸/聚己二酸-对苯二甲酸丁二酯对土壤细菌群落结构的影响及其降解菌的筛选[J]. 微生物学通报 2020(02)
- [2].邻苯二甲酸二甲酯降解菌的研究进展[J]. 高师理科学刊 2019(02)
- [3].萘降解菌的分离、鉴定及降解特性的研究[J]. 中国酿造 2017(02)
- [4].1株大分子有机物降解菌的分离、鉴定及酶学分析[J]. 江苏农业科学 2017(05)
- [5].一株萘污染降解菌的分离鉴定及在污染土壤中降解效果的研究[J]. 职业与健康 2017(13)
- [6].润滑油降解菌的分离筛选与鉴定[J]. 广州化工 2017(13)
- [7].萘降解菌的分离及其联合修复作用的研究进展[J]. 环境科学与技术 2017(07)
- [8].一株耐低温原油降解菌的分离鉴定及降解特性[J]. 浙江农业学报 2016(10)
- [9].秸秆降解菌的筛选及对秸秆的降解效果[J]. 生态学杂志 2020(04)
- [10].互营烃降解菌系的短链脂肪酸降解特性[J]. 应用与环境生物学报 2020(04)
- [11].玉米秸秆降解菌的筛选[J]. 再生资源与循环经济 2018(11)
- [12].一株苦马豆素降解菌的分离与鉴定[J]. 西北农业学报 2016(10)
- [13].原油微生物群落构成及降解菌降解特性的研究[J]. 生物技术通报 2013(01)
- [14].营养要素对原油降解菌生长的影响[J]. 生物技术 2009(02)
- [15].聚乳酸降解菌的分离鉴定及其产酶和降解特性[J]. 精细化工 2020(03)
- [16].餐饮油烟废气降解菌种的选育研究[J]. 环境与发展 2019(12)
- [17].高效多环芳烃降解菌的筛选、鉴定及降解特性分析[J]. 上海农业学报 2020(01)
- [18].一株土霉素降解菌的筛选鉴定及性能研究[J]. 环境科学导刊 2020(05)
- [19].2株柴油降解菌的分离筛选及生长特性分析[J]. 浙江师范大学学报(自然科学版) 2019(01)
- [20].氯霉素降解菌的筛选与降解性能[J]. 医学动物防制 2017(08)
- [21].毒死蜱降解菌的筛选·鉴定·降解特性[J]. 安徽农业科学 2017(19)
- [22].2株毒死蜱降解菌的分离鉴定及其混合降解特性研究[J]. 热带作物学报 2017(08)
- [23].聚丙烯酰胺降解菌的研究进展及展望[J]. 化工管理 2015(04)
- [24].三唑磷降解菌的分离鉴定及降解特性[J]. 南方农业学报 2015(04)
- [25].鲭鱼中组胺降解菌的筛选鉴定和发酵条件初探[J]. 中国食品学报 2014(08)
- [26].一株萘降解菌的分离及其在石油降解中耐盐性的研究[J]. 长春师范学院学报 2013(04)
- [27].北极表层海水中氯代十六烷降解菌的多样性[J]. 微生物学报 2012(08)
- [28].多菌灵降解菌系的筛选与组成分析及其对土壤中多菌灵的降解[J]. 中国农业科学 2012(23)
- [29].百草枯降解菌研究初报[J]. 湖北农业科学 2011(16)
- [30].稠油降解菌的筛选及特性研究[J]. 石油炼制与化工 2010(07)