非线性椭圆型微分方程解的存在性

非线性椭圆型微分方程解的存在性

论文摘要

本文利用非线性泛函分析的理论与方法研究了p(x)-Laplace方程在边值条件下解的存在性问题,分别讨论了p(x)为常数,P(x)(x∈Ω(?)RN)情形下的对应问题.本文主要内容分为两部分:在第2章中,当p(x)为常数p时,我们主要讨论如下的p-Laplace方程解的存在性.其中Ω是RN中的具有光滑边界的有界区域,f(x,t)是Caratheodory函数,且满足一定的结构性条件,本文改进了张继红,张申贵等人在文献[6],[9]的工作.在第3章中,当p(x)是Ω的连续实值函数时,我们讨论了如下的p(x)-Laplace方程非平凡解的存在性,其中Ω是RN中的有界区域,p(x)为Ω上的Lipschtiz连续实值函数,且p(x)>1,x∈Ω.f(x,t)是连续函数且满足一定的增长条件.本文改进了张启虎等人在文献[17]中的部分工作.

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 p-Laplace方程的发展现状及研究内容
  • 1.2 p(x)-Laplace方程的发展现状及研究内容
  • 第2章 p-Laplace方程的边值问题
  • 2.1 引言
  • 2.2 预备知识
  • 2.3 几个引理
  • 2.4 主要结论及证明过程
  • 2.5 例子
  • 第3章 p(x)-Laplace方程解的存在性
  • 3.1 问题的提出
  • 3.2 准备工作
  • 3.3 主要结论及证明
  • 第4章 总结
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].一类(2,p)-Laplace方程弱解的L~∞估计[J]. 河南科学 2020(10)
    • [2].含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解的分歧性[J]. 数学物理学报 2020(05)
    • [3].Laplace变换在偏微分方程中的应用[J]. 教育教学论坛 2017(04)
    • [4].应用Laplace变换计算两类广义积分[J]. 武汉船舶职业技术学院学报 2014(05)
    • [5].Laplace-Stieltjes变换的对数级与对数型[J]. 江西师范大学学报(自然科学版) 2017(02)
    • [6].扩散过程占位时的双Laplace变换[J]. 湖南文理学院学报(自然科学版) 2017(02)
    • [7].Laplace变换在常系数线性微分方程求解中的应用[J]. 青年与社会 2019(01)
    • [8].关于随机变量的Laplace变换[J]. 数学学习与研究 2011(17)
    • [9].基于实Laplace小波的脉冲涡流检测系统特性分析[J]. 仪器仪表学报 2013(11)
    • [10].奇异p(x)-Laplace方程正解的存在性[J]. 赤峰学院学报(自然科学版) 2014(03)
    • [11].按Laplace谱半径对圈长和阶数固定的单圈图的排序[J]. 大连理工大学学报 2013(01)
    • [12].On the Laplace transform of delta function[J]. Journal of Chongqing University(English Edition) 2013(01)
    • [13].Laplace方程九点差分格式的构造及其误差估计[J]. 哈尔滨师范大学自然科学学报 2011(04)
    • [14].Laplace-Stieltjes变换的收敛性与增长性[J]. 华南师范大学学报(自然科学版) 2010(01)
    • [15].利用Laplace变换计算分数阶微积分[J]. 天水师范学院学报 2010(02)
    • [16].一类p(x)-Laplace方程组径向解的存在性[J]. 河北工业大学学报 2008(02)
    • [17].斯特林制冷机振动数学模型的Laplace变换及仿真[J]. 低温与超导 2008(04)
    • [18].On Singular Sets of Local Solutions to p-Laplace Equations[J]. Chinese Annals of Mathematics 2008(05)
    • [19].Mittag-Leffler函数的Laplace变换[J]. 吕梁学院学报 2019(02)
    • [20].Evaluation of Certain Integrals Involving the Product of Classical Hermite's Polynomials Using Laplace Transform Technique and Hypergeometric Approach[J]. Analysis in Theory and Applications 2017(04)
    • [21].离散Φ-Laplace问题的正解(英文)[J]. 中山大学学报(自然科学版) 2017(01)
    • [22].带漂移布朗运动的一个局部时的Laplace变换[J]. 湖南文理学院学报(自然科学版) 2017(02)
    • [23].Laplace-Stieltjes变换所定义的整函数的对数级[J]. 南昌大学学报(理科版) 2017(03)
    • [24].Laplace变换在解微分方程中的应用研究[J]. 赤峰学院学报(自然科学版) 2014(16)
    • [25].p(t)-Laplace方程解的存在性[J]. 淮海工学院学报(自然科学版) 2014(03)
    • [26].广义Laplace-Stieltjes变换的级与型[J]. 江西科学 2013(03)
    • [27].利用Laplace变换求解一维波动方程的定解问题[J]. 新余学院学报 2012(02)
    • [28].利用Laplace变换求解一维波动方程的定解问题[J]. 河北北方学院学报(自然科学版) 2010(03)
    • [29].Laplace-Stieltjes变换所定义的有限级整函数的级与型[J]. 北京师范大学学报(自然科学版) 2009(03)
    • [30].具有给定割边数的图的无符号Laplace谱半径[J]. 安徽理工大学学报(自然科学版) 2009(02)

    标签:;  ;  ;  

    非线性椭圆型微分方程解的存在性
    下载Doc文档

    猜你喜欢