论文摘要
随着科学技术的进步与发展,在物理学、种群动力学、自动控制、生物学、医学和经济学等许多自然科学和边缘学科的领域中提出了大量由微分方程和差分方程描述的具体数学模型。微分方程及差分方程是用来描述自然现象变化规律的一种有力工具,由于寻求其通解十分困难,故从理论上探讨解的性态一直是近年来研究的热点问题。 我们的工作主要集中在两个方面:一方面是微分方程的振动性理论;另一方面是差分方程的振动性理论。本文由五章组成,主要内容如下: 第一章概述了微分方程及差分方程的应用背景和国内、外研究状况,这一章也包括一些预备知识,如有关微分方程、差分方程理论的基本概念和重要的不动点定理。 第二章讨论了二阶自共轭脉冲微分方程,通过建立与之振动性等价的微分方程,或考虑脉冲点与时滞间的关系,我们得出方程振动的一些充分条件。 第三章研究了带有阻尼项的二阶微分方程的振动性,利用Riccati变换,给出了方程有界解振动准则,且对一些特殊情形得到非振动解的一些性质。 第四章给出了具有连续变量的一阶中立型、二阶中立型及高阶非线性差分方程的振动准则。我们的结果改进和推广了文献中的一些结果。 第五章考虑高阶中立型非线性差分方程,通过构造函数,得到方程解振动的充分条件,同时还研究了方程存在不以零为界的正解的条件。
论文目录
相关论文文献
- [1].多层差分方程的隐式中点法稳定性判据仿真[J]. 计算机仿真 2020(06)
- [2].特殊差分方程的求解[J]. 绍兴文理学院学报(自然科学) 2020(03)
- [3].一阶非线性模糊差分方程动力学行为研究[J]. 模糊系统与数学 2019(03)
- [4].无穷分数差分方程三点边值问题[J]. 应用数学学报 2015(06)
- [5].关于复差分方程组的允许解的形式[J]. 数学物理学报 2016(05)
- [6].差分方程在经济动态分析中的应用[J]. 河南教育学院学报(自然科学版) 2014(04)
- [7].动态经济分析中自治差分方程组的均衡值与收敛性[J]. 北京服装学院学报(自然科学版) 2014(03)
- [8].一类高阶有理差分方程的解[J]. 数学的实践与认识 2015(14)
- [9].差分方程在金融领域的应用[J]. 课程教育研究 2018(26)
- [10].带周期参数的差分方程组的全局性质[J]. 河北北方学院学报(自然科学版) 2015(05)
- [11].用差分方程理论求一类数列的通项公式[J]. 数学学习与研究 2010(09)
- [12].泛函差分方程的概周期解的存在和稳定性[J]. 佳木斯大学学报(自然科学版) 2013(04)
- [13].有限延迟差分方程中的平均理论[J]. 哈尔滨师范大学自然科学学报 2012(01)
- [14].差分方程在概率问题中的应用[J]. 高师理科学刊 2011(06)
- [15].一类有理差分方程的全局渐近稳定性[J]. 南华大学学报(自然科学版) 2010(03)
- [16].关于z变换的研究及其在解差分方程中的应用[J]. 数学的实践与认识 2010(14)
- [17].一类高阶有理差分方程的全局渐近稳定性[J]. 兰州理工大学学报 2008(01)
- [18].一类非线性有理差分方程的全局渐近稳定性[J]. 兰州理工大学学报 2008(03)
- [19].具有指数项的高维循环差分方程的动力学性质[J]. 济南大学学报(自然科学版) 2019(04)
- [20].一类差分方程的S渐近ω周期解[J]. 江西科学 2017(06)
- [21].一类复差分方程组的解的增长级(英文)[J]. 数学季刊(英文版) 2018(01)
- [22].一类二阶非线性差分方程同宿解的存在性[J]. 应用数学学报 2015(06)
- [23].一类三阶有理差分方程组的解[J]. 中北大学学报(自然科学版) 2016(04)
- [24].具有超前和滞后的2n阶泛函差分方程的周期解[J]. 南京师大学报(自然科学版) 2014(02)
- [25].脉冲差分方程的两度量实用稳定性[J]. 保定学院学报 2010(03)
- [26].具有半正非线性项的分数阶差分方程组边值问题的正解[J]. 数学物理学报 2020(01)
- [27].基于差分方程的杭州旅游收入研究[J]. 经济研究导刊 2019(22)
- [28].一类具指数函数系数的非线性复差分方程[J]. 工程数学学报 2017(01)
- [29].一类复差分方程组的亚纯解[J]. 数学学报(中文版) 2016(03)
- [30].若干q-差分方程的形式解及其应用[J]. 杭州师范大学学报(自然科学版) 2017(02)