李敏慧:含一维/二维纳米材料的复合质子膜的制备及其性能研究论文

李敏慧:含一维/二维纳米材料的复合质子膜的制备及其性能研究论文

本文主要研究内容

作者李敏慧(2019)在《含一维/二维纳米材料的复合质子膜的制备及其性能研究》一文中研究指出:燃料电池是将储存于燃料和氧化剂中的化学能转化为电能的电化学装置,是高效利用氢能的最佳工具,并将成为未来节能装置的首选。质子交换膜(PEM)是质子交换膜燃料电池(PEMFC)的一个关键部件。目前广泛使用的PEM是全氟磺酸质子交换膜(PFSA)。由于在高温(>80°C)下性能降低和成本较高等缺点,限制了其在PEMFC商业化的应用。为了克服这些局限性,低成本可高温运行的质子交换膜的研究正在深入进行,其中最有吸引力的是非氟化芳烃类聚合物。本研究就是采用非氟化芳烃类聚合物——磺化聚醚醚酮(SPEEK)为基体,研究开发具有与PFSA膜性能相当并且成本更低的替代膜,并可在高温下运行。磺化聚醚醚酮(SPEEK)因其侧链上磺酸基团(-SO3H)的存在,因而具有良好的质子传导性,并且本身具有的优异的化学稳定性和热稳定性等因素,使其成为质子交换膜基体的研究热点。为进一步提高SPEEK膜的质子传导性能和热稳定性,本论文试图通过三种手段对SPEEK膜进行改性,即增加复合膜中的水分子、构建质子传递通道和增加质子的载体位点,制备出具有优异性能的复合质子交换膜。本文的具体研究内容及主要结论如下:(1)增加复合膜中的水分子:利用一维TMA·M纳米线调控复合质子交换膜的微观结构。采用共混的方法将一维TMA·M纳米线添加到SPEEK膜中制备出复合质子交换膜,分析了一维TMA·M纳米线的加入对复合质子交换膜的质子传递机理及传递性能的影响。研究发现采用共混法制备的复合质子交换膜,TMA·M均匀分布在复合膜中,并且质子传导有了率显著增强,当TMA·M的添加量为15%时,温度为25℃饱和湿度下复合膜的电导率为5.13 mS·cm-1。随着温度的升高,该复合膜的质子电导率也随之升高。(2)在复合膜内构建质子传递通道:利用二维石墨相氮化碳(g-C3N4)纳米材料构建质子传递通道。采用共混的方法将改性的质子化g-C3N4掺杂到SPEEK基体中制备复合质子交换膜,分析了质子化g-C3N4的加入对复合质子交换膜的质子传递机理及传递性能的影响。实验结果表明,采用共混法制备的复合质子交换膜,质子化g-C3N4均匀分布于复合膜中,并且质子电导率有显著的提高。SPEEK/g-C3N4-5%复合膜在25℃饱和湿度下的质子电导率为8.866mS·cm-1。随着温度的升高,该复合膜的质子电导率也随之升高。(3)增加复合膜的质子载体位点:采用共混的方法,将二维羟基化六方氮化硼(h-BN-OH-)纳米材料掺杂到SPEEK基体中制备复合质子交换膜。改性的六方氮化硼增加了复合膜中的质子载体位点,加速了质子的快速传递。系统地分析了羟基化h-BN的加入对复合膜质子传递机理和传递能力的影响。研究发现,采用共混法制备的复合质子交换膜,羟基化h-BN均匀分布于复合膜中,并且复合膜的电导率得以提高。SPEEK/h-BN-5%复合膜在25℃饱和湿度下的质子电导率为9.07 mS·cm-1。随着温度的升高,该复合膜的质子电导率也随之升高。

Abstract

ran liao dian chi shi jiang chu cun yu ran liao he yang hua ji zhong de hua xue neng zhuai hua wei dian neng de dian hua xue zhuang zhi ,shi gao xiao li yong qing neng de zui jia gong ju ,bing jiang cheng wei wei lai jie neng zhuang zhi de shou shua 。zhi zi jiao huan mo (PEM)shi zhi zi jiao huan mo ran liao dian chi (PEMFC)de yi ge guan jian bu jian 。mu qian an fan shi yong de PEMshi quan fu huang suan zhi zi jiao huan mo (PFSA)。you yu zai gao wen (>80°C)xia xing neng jiang di he cheng ben jiao gao deng que dian ,xian zhi le ji zai PEMFCshang ye hua de ying yong 。wei le ke fu zhe xie ju xian xing ,di cheng ben ke gao wen yun hang de zhi zi jiao huan mo de yan jiu zheng zai shen ru jin hang ,ji zhong zui you xi yin li de shi fei fu hua fang ting lei ju ge wu 。ben yan jiu jiu shi cai yong fei fu hua fang ting lei ju ge wu ——huang hua ju mi mi tong (SPEEK)wei ji ti ,yan jiu kai fa ju you yu PFSAmo xing neng xiang dang bing ju cheng ben geng di de ti dai mo ,bing ke zai gao wen xia yun hang 。huang hua ju mi mi tong (SPEEK)yin ji ce lian shang huang suan ji tuan (-SO3H)de cun zai ,yin er ju you liang hao de zhi zi chuan dao xing ,bing ju ben shen ju you de you yi de hua xue wen ding xing he re wen ding xing deng yin su ,shi ji cheng wei zhi zi jiao huan mo ji ti de yan jiu re dian 。wei jin yi bu di gao SPEEKmo de zhi zi chuan dao xing neng he re wen ding xing ,ben lun wen shi tu tong guo san chong shou duan dui SPEEKmo jin hang gai xing ,ji zeng jia fu ge mo zhong de shui fen zi 、gou jian zhi zi chuan di tong dao he zeng jia zhi zi de zai ti wei dian ,zhi bei chu ju you you yi xing neng de fu ge zhi zi jiao huan mo 。ben wen de ju ti yan jiu nei rong ji zhu yao jie lun ru xia :(1)zeng jia fu ge mo zhong de shui fen zi :li yong yi wei TMA·Mna mi xian diao kong fu ge zhi zi jiao huan mo de wei guan jie gou 。cai yong gong hun de fang fa jiang yi wei TMA·Mna mi xian tian jia dao SPEEKmo zhong zhi bei chu fu ge zhi zi jiao huan mo ,fen xi le yi wei TMA·Mna mi xian de jia ru dui fu ge zhi zi jiao huan mo de zhi zi chuan di ji li ji chuan di xing neng de ying xiang 。yan jiu fa xian cai yong gong hun fa zhi bei de fu ge zhi zi jiao huan mo ,TMA·Mjun yun fen bu zai fu ge mo zhong ,bing ju zhi zi chuan dao you le lv xian zhe zeng jiang ,dang TMA·Mde tian jia liang wei 15%shi ,wen du wei 25℃bao he shi du xia fu ge mo de dian dao lv wei 5.13 mS·cm-1。sui zhao wen du de sheng gao ,gai fu ge mo de zhi zi dian dao lv ye sui zhi sheng gao 。(2)zai fu ge mo nei gou jian zhi zi chuan di tong dao :li yong er wei dan mo xiang dan hua tan (g-C3N4)na mi cai liao gou jian zhi zi chuan di tong dao 。cai yong gong hun de fang fa jiang gai xing de zhi zi hua g-C3N4can za dao SPEEKji ti zhong zhi bei fu ge zhi zi jiao huan mo ,fen xi le zhi zi hua g-C3N4de jia ru dui fu ge zhi zi jiao huan mo de zhi zi chuan di ji li ji chuan di xing neng de ying xiang 。shi yan jie guo biao ming ,cai yong gong hun fa zhi bei de fu ge zhi zi jiao huan mo ,zhi zi hua g-C3N4jun yun fen bu yu fu ge mo zhong ,bing ju zhi zi dian dao lv you xian zhe de di gao 。SPEEK/g-C3N4-5%fu ge mo zai 25℃bao he shi du xia de zhi zi dian dao lv wei 8.866mS·cm-1。sui zhao wen du de sheng gao ,gai fu ge mo de zhi zi dian dao lv ye sui zhi sheng gao 。(3)zeng jia fu ge mo de zhi zi zai ti wei dian :cai yong gong hun de fang fa ,jiang er wei qiang ji hua liu fang dan hua peng (h-BN-OH-)na mi cai liao can za dao SPEEKji ti zhong zhi bei fu ge zhi zi jiao huan mo 。gai xing de liu fang dan hua peng zeng jia le fu ge mo zhong de zhi zi zai ti wei dian ,jia su le zhi zi de kuai su chuan di 。ji tong de fen xi le qiang ji hua h-BNde jia ru dui fu ge mo zhi zi chuan di ji li he chuan di neng li de ying xiang 。yan jiu fa xian ,cai yong gong hun fa zhi bei de fu ge zhi zi jiao huan mo ,qiang ji hua h-BNjun yun fen bu yu fu ge mo zhong ,bing ju fu ge mo de dian dao lv de yi di gao 。SPEEK/h-BN-5%fu ge mo zai 25℃bao he shi du xia de zhi zi dian dao lv wei 9.07 mS·cm-1。sui zhao wen du de sheng gao ,gai fu ge mo de zhi zi dian dao lv ye sui zhi sheng gao 。

论文参考文献

  • [1].官能化石墨烯/磺化聚芳醚腈质子交换膜的制备与性能研究[D]. 成涛.电子科技大学2019
  • [2].膦酸功能化硅氧烷/SPEEK质子交换膜的制备与性能研究[D]. 任学超.武汉理工大学2018
  • [3].质子交换膜的亲疏水性研究[D]. 肖飞虎.武汉理工大学2018
  • [4].磺化苯并咔唑基聚醚砜多向质子交换膜的制备与研究[D]. 王占.福建师范大学2018
  • [5].燃料电池用聚丙烯腈基交换膜的制备与性能[D]. 吴洪秀.长春工业大学2019
  • [6].聚芳醚酮类质子交换膜杂环位置与磺化位点的结构优化与性能研究[D]. 刘文长.长春工业大学2019
  • [7].氮杂环接枝的磺化聚芳醚酮砜质子交换膜的制备与性能研究[D]. 王春梅.长春工业大学2019
  • [8].侧链磺化聚芳醚酮砜及其复合型质子交换膜的制备与性能研究[D]. 刘畅.长春工业大学2019
  • [9].接枝交联型质子交换膜的制备和性能研究[D]. 张虚略.南京理工大学2018
  • [10].磺化聚醚醚酮质子交换膜结晶度的调控及其对膜性能的影响[D]. 霍江贝.中国石油大学(北京)2017
  • 读者推荐
  • [1].非贵金属氧还原电催化剂的制备及催化性能研究[D]. 朱园园.青岛科技大学2019
  • [2].缺陷对g-C3N4/TiO2复合半导体光电化学性能的影响研究[D]. 肖利敏.河南大学2019
  • [3].石墨相氮化碳多相材料的制备与光催化性能研究[D]. 毛栋星.苏州科技大学2019
  • [4].石墨相氮化碳的合成、改性及光催化性能研究[D]. 俞凡.南昌航空大学2019
  • [5].石墨相氮化碳(g-C3N4)的结构调控与光催化制氢增强机制研究[D]. 李佳.西安理工大学2019
  • [6].氮杂环接枝的磺化聚芳醚酮砜质子交换膜的制备与性能研究[D]. 王春梅.长春工业大学2019
  • [7].侧链磺化聚芳醚酮砜及其复合型质子交换膜的制备与性能研究[D]. 刘畅.长春工业大学2019
  • [8].基于聚苯并咪唑/功能化离子液体的交联型离子交换膜的制备与性能研究[D]. 陈浩.长春工业大学2019
  • [9].具有优异长期稳定性的聚苯并咪唑基离子交换膜的制备与性能研究[D]. 王旭.长春工业大学2019
  • [10].面向均一性控制的燃料电池电堆阴极流道结构设计[D]. 崔欢.吉林大学2019
  • 论文详细介绍

    论文作者分别是来自青岛科技大学的李敏慧,发表于刊物青岛科技大学2019-07-19论文,是一篇关于质子电导率论文,青岛科技大学2019-07-19论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自青岛科技大学2019-07-19论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  

    李敏慧:含一维/二维纳米材料的复合质子膜的制备及其性能研究论文
    下载Doc文档

    猜你喜欢