论文摘要
VUV激发的稀土荧光粉是大屏幕壁挂式彩电PDP(等离子平板显示器)和无汞荧光灯应用技术的首先材料体系。硼铝酸盐对于稀土离子发光是一类很好的基质,其在VUV区有很强的吸收,发光效率较高,具有很好的耐真空紫外光辐照和抗离子轰击的能力。因此本文着重研究了稀土离子掺杂的硼铝酸盐荧光粉的合成及发光性能。本文采用高温固相法制备了稀土离子掺杂的MAl2B2O7:Re(M=Ca,Sr,Ba;Re=Eu3+,Tb3+,Eu2+)系列荧光粉,并对其结构特性及发光性能进行了研究。样品的X射线粉末衍射数据与JCPDS标准卡片符合得很好,激活离子的掺入只是取代了碱土离子晶格位置,并没有引起基质结构的明显变化,表明我们合成了需要的材料。在MAl2B2O7:Eu3+(M=Ca,Sr,Ba)系列样品,分别测定了该荧光体激发光谱和发射光谱,我们发现该材料在真空紫外区域有很强的吸收。样品的激发谱在130-170nm和230nm区域有两个很强的宽的吸收带,位于130-170nm的吸收带主要是硼氧和铝氧集团的吸收;位于230nm附近的吸收主要是Eu3+电荷转移态的吸收。随着Ba和Ca取代Sr,基质吸收强度明显降低,并且向低能方向移动了,基质吸收由峰值位于167nm附近的谱带,向峰值位于172nm附近的谱带移动了大约5nm左右,而230nm左右的稀土离子的吸收是明显增加的。当样品在172nm激发下,CaAl2B2O7:Eu3+的真空紫外激发(172nm)的发光谱,发射光谱主要由峰值位于592nm,613nm,627nm的三个峰组成,其中592nm左右的发射最强:对应于Eu3+的5D0→7F1跃迁发射,为磁偶极跃迁;由于MAl2B2O7:Eu3+(M=Sr,Ba)中Eu3+占据更多的是非对称格位,以5D0→7F2跃迁为主,对应613nm处的发射强度最大。在MAl2B2O7:Tb3+(M=Ca,Sr,Ba)系列样品中,样品的VUV激发谱在120~200nm和200~300nm光谱区有两个较强的吸收带。位于120~200nm内的激发带主要是基质吸收,基质晶格中稀土离子被硼酸根离子分隔开,这包括硼氧和铝氧基团在真空紫外的吸收。Tb3+的(4f8→4f75d)吸收位于200~300nm的区域内,并观察到基质与稀土离子Tb3+之间存在较强的能量传递。从发射光谱可以发现,在172nm的激发下,发射峰由492 nm,546 nm,592 nm和624 nm组成,分别对应Tb3+的5D4→7FJ(J=6,5,4,3)跃迁发射,其中546 nm是主发峰。当材料中掺杂Ce3+时,材料在VUV的吸收降低,而在紫外增强,主要是Ce3+降低了基质和Tb3+在真空紫外区的吸收,Tb3+的发光有明显的猝灭现象,因为Ce3+离子的自我捕获激子的能力是很强的,Ce3+、Tb3+离子形成一种竞争吸收真空紫外光子的现象,然而他们之间的能量传递效率是要小于1的,所以共掺稀土离子的样品中,发光效率是要小于单掺稀土离子的样品的。因此在PDP荧光粉材料中尽量避免Ce3+的存在。在样品BaAl2B2O7:Eu2+在真空紫外有很好的吸收,在172nm激发下可以发出434nm的蓝光。不同掺杂浓度离子Ba1-XSrXAl2B2O7:Eu2+在172nm激发下,我们可以看出随着Sr2+浓度的增加,这是由于Sr2+比Ba2+的半径小,电荷密度就大,接受配体电子的能力弱。样品的发射强度不断减弱,并且峰值向长波方向移动。