VaR在投资组合风险结构调整过程中的应用

VaR在投资组合风险结构调整过程中的应用

论文摘要

20世纪90年代以来,随着金融衍生产品市场的迅猛发展,加剧了金融市场的波动,2008年的金融危机使得大量的金融机构和投资者破产,风险管理再一次成为金融活动的核心内容。基于VaR的风险管理理论也在巴塞尔协议II的推广下开始广泛地被金融机构所运用,成为目前市场上主流的风险管理工具。本文将VaR及其延伸概念边际VaR和成分VaR的风险管理理论运用到证券市场的投资组合风险调整过程中,选取能够覆盖多数行业的40只个股构成一个投资组合,运用参数法和蒙特卡洛法分别计算投资组合在95%的置信水平和持有期为1天的条件下组合的VaR、CVaR和MVaR,以此来分析投资组合的风险分布及单只个股的风险贡献度、并运用失败率法验证VaR的有效性;同时将VaR运用均值-VaR的组合优化理论确定投资组合的最小VaR投资组合,对比调整前后的损益走势图来说明VaR在投资组合风险调整优化过程中的有效性。结论显示:1)基于VaR的CVaR、MVaR能全面细致地反映组合的整体风险分布状况,CVaR主要反映投资组合的整体风险在成分股中的分布比例,MVaR反映的是个股对投资组合整体风险的边际贡献;投资者可以通过提高MVaR较小的个股的权重及降低MVaR较大的个股的权重来降低投资组合的整体风险VaR;2)相比均值-方差模型,均值-VaR组合优化模型能够更好地考虑组合下行的风险,计算出的最小VaR投资组合是有效前沿中使组合VaR最小的点;3)对比投资组合在最优投资权重和原始权重下的历史损益走势发现,最优投资点在弱市中能够有效地降低未来市场下行带来的风险,同时也会减少市场上行带来的收益水平。

论文目录

  • 摘要
  • Abstract
  • 1 序言
  • 1.1 研究背景及意义
  • 1.2 文献综述
  • 1.3 研究思路及创新点
  • 2 VaR 理论概述
  • 2.1 VaR 的定义
  • 2.2 VaR 的计算原理
  • 2.3 VaR 的计算方法
  • 2.4 基于 VaR 的延伸指标:边际 VaR、成分 VaR
  • 2.5 VaR 成为风险管理的主流工具
  • 2.6 均值-VaR 组合优化模型
  • 3 实证数据整理
  • 3.1 样本及数据来源
  • 3.2 样本数据收益率计算
  • 3.3 收益率序列基本统计特性:
  • 3.4 风险矩阵法(RiskMetrics)计算组合收益率的协方差矩阵
  • 4 基于投资组合的实证研究
  • 4.1 两种方法计算 VaR
  • 4.2 参数法下组合 VaR 与历史实际损益对比-失败率检验法
  • 4.3 投资组合边际 VaR 和成分 VaR 的计算
  • 4.4 结果分析:CVaR 和 MVaR 作为投资组合权重调整的依据
  • 4.5 基于均值-VaR 约束下的最小 VaR 投资组合
  • 5 实证结论及建议
  • 5.1 研究结论总结
  • 5.2 本文研究的局限性
  • 致谢
  • 参考文献
  • 相关论文文献

    标签:;  ;  ;  

    VaR在投资组合风险结构调整过程中的应用
    下载Doc文档

    猜你喜欢