论文摘要
纹理分析在遥感、医学图像处理、计算机视觉及基于纹理的按图像内容检索等许多应用领域中具有重要意义。经验模态分解(Empirical mode decomposition,EMD)由Huang等人在1998年首次提出,该方法能够自适应的将原始信号分解为频率由高到低的一系列内蕴模态函数(Intrinsic Mode Function, IMF)及残差的和。作为一种完全的数据驱动方法,它从信号本身的尺度特征出发对信号进行分解,具有良好的局部适应性,近年来在信号去噪、故障诊断等方面得到广泛应用。Nunes等人将经验模态分解从一维推广到二维,将其应用于纹理分析。本文主要做了以下几个方面的工作:(1)分析现有的一维经验模态分解方法的抑制边界效应的方法,将其应用到二维经验模态分解中,并对二维经验模态分解方法进行改进。根据内蕴模函数的定义,改进二维经验模态分解中的筛分结束判别函数,避免因误差造成的筛分过程提前终止的现象;将紧支撑径向基函数插值法应用到Nunes的二维经验模态分解方法的包络构造过程中,并分析了应用不同的插值方法得到的分解结果。(2)利用二维经验模态分解方法对纹理图像做分类。对纹理图像进行二维经验模态分解,计算出内蕴模态函数的极值间距均值、瞬时幅值的均值及方差,组成特征向量,对纹理图像进行分类。(3)利用二维经验模态分解进行纹理图像的分割。对纹理图像进行二维经验模态分解,计算出内蕴模态函数的每个像素点对应的瞬时幅值及四个方向的瞬时频率组成特征向量,使用改进的模糊C-均值聚类算法对纹理图像进行分割。本文的实验仿真在Matlab 7.0环境下进行,使用二维经验模态分解方法对纹理图像进行分解,并从分解得到的内蕴模态函数中分别提取出的特征用于纹理分类及纹理分割,最终得到了较为精确的纹理分类及纹理分割结果,验证了所取特征的合理性。