冷却速度及高压对TiAl金属间化合物组织及相影响

冷却速度及高压对TiAl金属间化合物组织及相影响

论文摘要

本文采用非自耗真空氩弧熔炼炉熔炼合金,研究了冷却速度对Ti-48Al、Ti-48Al-0.2B、Ti-52Al、Ti-52Al-0.2B合金显微组织的影响;利用六面顶压机分别在2GPa和4GPa高压下制备Ti-48Al凝固试样;利用X射线衍射对不同冷却速度下的TiAl金属间化合物及高压下凝固的TiAl金属间化合物相组成进行了分析;采用光学显微镜、扫描电子显微镜、能谱分析仪等分析测试手段分别对常压、高压下合金凝固组织形貌进行了观察。X射线衍射分析表明,随着冷却速度的增加,Ti-48Al合金中γ相晶格参数a有减小的趋势,而c值的变化并无规律;使用铜和石墨模具吸铸的Ti-48Al和Ti-48Al0.2B合金试样,其原始α晶粒特别细小,块状转变完全,无α2/γ片层组织或α2单相组织,吸铸后只产生γ单相。随着冷却速度的增加,Ti-52Al和Ti-52Al-0.2B合金晶粒尺寸均有减小的趋势,微量B元素的加入致使片层组织间距变小,且B的细化效果减弱。高压下凝固的Ti-48Al合金由α2-Ti3Al和γ-TiAl相组成,随着凝固压力的增大,α2-Ti3Al相含量及片层组织均增多,偏析γ-TiAl相减少,且片层组织中Al含量升高。在不同压力下凝固时,圆形试样边缘的组织和心部的组织均有较大的差异,2GPa下凝固时,边缘部位和心部均为双态组织,但心部偏析γ-TiAl相较边缘部位多;而4GPa下凝固时,试样边缘组织为全片层状组织,心部为双态组织。文中最后讨论了压力对Ti-Al合金偏析的影响,随着压力的增大溶质偏析变小。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 课题背景
  • 1.2 高压技术及其发展概况
  • 1.2.1 高压的产生
  • 1.2.2 高压技术发展概况
  • 1.2.3 高压在材料科学中的应用
  • 1.3 高压研究方法
  • 1.3.1 高压热力学性质的测定
  • 1.3.2 高压下物质电阻率的测定
  • 1.3.3 高压X-射线衍射法
  • 1.3.4 高压谱学研究方法
  • 1.4 高压对凝固组织的影响
  • 1.4.1 高压对 Al-9.6%Mg 合金凝固组织的影响
  • 1.4.2 高压下Al-Si 合金凝固组织
  • 1.4.3 高压对Al-Cu 合金凝固组织的影响
  • 1.4.4 高压对Al-Ni-Y 合金高压凝固组织的影响
  • 1.4.5 高压对Al-Ge 合金凝固组织的影响
  • 1.4.6 高压对ZA27 合金凝固组织的影响
  • 1.5 钛铝金属间化合物概述
  • 1.6 本文主要研究内容
  • 第2章 实验材料及实验方法
  • 2.1 合金成分的选取
  • 2.2 试样的制备
  • 2.2.1 常压试样的制备
  • 2.2.2 高压试样制备
  • 2.3 试样检测分析方法
  • 第3章 冷却速度对TiAl 基合金显微组织的影响
  • 3.1 引言
  • 3.2 铸态 Ti-48Al 和 Ti-48Al-0.2B 的相组成及显微组织分析
  • 3.2.1 相组成
  • 3.2.2 显微组织分析
  • 3.3 不同冷速下 Ti-48Al 和 Ti-48Al-0.2B 的相组成及显微组织
  • 3.3.1 相组成
  • 3.3.2 显微组织分析
  • 3.4 冷却速度对 Ti-52Al 和 Ti-52Al-0.2B 相组成及显微组织影响
  • 3.4.1 相组成
  • 3.4.2 显微组织分析
  • 3.5 本章小结
  • 第4章 高压下凝固Ti-Al 金属间化合物的组织
  • 4.1 引言
  • 4.2 压力对TiAl 金属间化合物凝固过程的影响
  • 4.2.1 压力对合金熔点的影响
  • 4.2.2 压力对溶质扩散系数的影响
  • 4.2.3 压力对形核过程的影响
  • 4.2.4 压力对长大过程的影响
  • 4.3 高压下凝固Ti-48Al 合金的相组成和组织
  • 4.3.1 X 射线衍射物相分析
  • 4.3.2 Ti-Al 金属间化合物凝固组织
  • 4.3.3 Ti-Al 金属间化合物高压凝固组织
  • 4.3.4 高压凝固对相成分的影响
  • 4.3.5 压力对TiAl 合金偏析的影响
  • 4.4 本章小结
  • 结论
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].PST TiAl single crystals for high temperature applications[J]. Science Foundation in China 2016(04)
    • [2].Advances in phase relationship for high Nb-containing TiAl alloys[J]. Rare Metals 2016(01)
    • [3].新型超轻TiAl多孔材料的制备及其力学性能[J]. 稀有金属材料与工程 2016(09)
    • [4].γ–TiAl金属间化合物加工的国内外研究现状[J]. 航空制造技术 2020(04)
    • [5].Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy[J]. Rare Metals 2017(04)
    • [6].TiAl金属间化合物纳米粉末的相转变[J]. 稀有金属材料与工程 2015(05)
    • [7].Fabrication of in situ Ti_2AlN/TiAl Composites by Reaction Hot Pressing and Their Properties[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2014(01)
    • [8].A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti_3 Al alloy[J]. Science China(Physics,Mechanics & Astronomy) 2012(02)
    • [9].Structural and Thermodynamic Properties of TiAl intermetallics under High Pressure[J]. Communications in Theoretical Physics 2012(01)
    • [10].Synthesis of C_f/TiAl_3 Composite by Infiltration-In Situ Reaction[J]. Journal of Materials Science & Technology 2009(06)
    • [11].Effects of Nb and Si on high temperature oxidation of TiAl[J]. Transactions of Nonferrous Metals Society of China 2008(03)
    • [12].Oxidation behavior of niobized TiAl by plasma surface alloying[J]. Journal of University of Science and Technology Beijing 2008(05)
    • [13].聚片孪生TiAl单晶及其应用展望[J]. 振动.测试与诊断 2019(05)
    • [14].TiAl合金的热暴露表面及其对室温拉伸性能的影响[J]. 钢铁研究学报 2010(11)
    • [15].TiAl多孔材料的研制[J]. 稀有金属材料与工程 2008(S4)
    • [16].TiAl合金及其复合材料的研究进展与发展趋势[J]. 燕山大学学报 2020(02)
    • [17].Crack propagation mechanism of γ-TiAl alloy with pre-existing twin boundary[J]. Science China(Technological Sciences) 2019(09)
    • [18].不同表面状态和热暴露对γ-TiAl合金疲劳性能的影响[J]. 稀有金属材料与工程 2017(02)
    • [19].Y掺杂γ-TiAl电子结构的第一性原理计算[J]. 稀有金属材料与工程 2017(02)
    • [20].长期热暴露对含钨铌γ-TiAl合金疲劳及表面损伤容限的影响[J]. 中国有色金属学报 2016(06)
    • [21].新型Ti_3AlC_2-Al_2O_3/TiAl_3复合材料的组织结构与性能[J]. 复合材料学报 2015(01)
    • [22].TiAl合金离子渗碳摩擦磨损性能研究[J]. 材料科学与工艺 2011(02)
    • [23].热暴露对铸造TiAl合金表面完整性及拉伸性能的影响[J]. 钢铁研究学报 2011(11)
    • [24].热压反应合成Al_2O_3-Ho_2O_3/TiAl复合材料[J]. 粉末冶金技术 2010(01)
    • [25].Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry 2010(03)
    • [26].High-temperature oxidation behavior of Al_2O_3/TiAl matrix composite in air[J]. Science in China(Series E:Technological Sciences) 2009(05)
    • [27].Fabrication and Mechanical Properties of Al_2O_3/TiAl Composites[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2009(05)
    • [28].Diffusion Bonding of Dissimilar Intermetallic Alloys Based on Ti_2AlNb and TiAl[J]. Journal of Materials Science & Technology 2009(06)
    • [29].Theoretical Calculations for Structural, Elastic and Thermodynamic Properties of γTiAl Under High Pressure[J]. Communications in Theoretical Physics 2008(12)
    • [30].基于最小加工表面裂纹的TiAl合金铣削参数优化[J]. 宇航材料工艺 2020(02)

    标签:;  ;  ;  ;  

    冷却速度及高压对TiAl金属间化合物组织及相影响
    下载Doc文档

    猜你喜欢