论文摘要
纤维隔热材料由于具有低成本、低密度、高效隔热等特点,一直得到建筑、工业以及国防等领域的青睐。但是由于纤维隔热材料本身对辐射电磁波具有高透过、低反射的特点,从而大大降低了其高温隔热性能。本研究采用溶胶-凝胶和逐层吸附法在石英纤维表面原位制备掺银氧化铟锡(Ag-ITO)多层薄膜作为红外反射层以降低纤维隔热材料的辐射传热。影响Ag-ITO多层薄膜性能的因素主要有三个:薄膜的孔隙率、表面粗糙度以及Ag粒子在薄膜中的空间分布状态。本文中,通过扫描电镜(SEM)、X射线衍射(XRD)、掠入射小角X射线散射(GISAXS)、掠入射X射线反射技术(GIXR)等手段研究了热处理工艺中温度、升温速率和保温时间三个因素对ITO薄膜的孔隙率、表面粗糙度的影响,以及对多层薄膜中Ag层结构的影响;同时借助傅里叶红外(FT-IR)、紫外-可见-近红外(UV-VIS-NIR)等手段表征了薄膜材料的光学性能。本文主要研究内容与结论如下:通过溶胶-凝胶法在玻璃基底制备了ITO薄膜。结果显示,ITO薄膜结晶温度约450℃、表面富锡、薄膜中孔洞具有分形结构,且其形状多呈椭圆状,沿薄膜表面展开。沿着薄膜厚度方向,薄膜的结构大体呈现三个区域:接近基底区域致密性好,孔径小;中间区域孔隙率高,孔径大;近表面区域在热处理温度T≤800℃时孔隙率与孔径较低,而温度T>800℃时,孔隙率与孔径反而会升高。利用GISAXS、GIXR、XRD等手段研究了热处理工艺对ITO薄膜孔隙率和表面粗糙度的影响。结果表明,随着热处理温度的升高,薄膜的致密度提高,孔隙率从低温时的33.6%降到高温时的23.8%,其中低温时的孔隙率降低主要来源于大孔的收缩,高温时的孔隙率降低主要来源于小孔的消除,而薄膜的表面粗糙度略有增大;提高升温速率由于降低了晶体生长的时间而有利于薄膜的致密化,且薄膜的表面粗糙度降低,但是当升温速率过高时,表面粗糙度又大大增大。1000℃快速热处理中,延长保温时间增大了近表面的孔隙率以及表面粗糙度而提高了整体薄膜材料的孔隙率。结合薄膜孔隙率以及表面粗糙度两个影响因素,优化溶胶-凝胶ITO薄膜的热处理工艺过程为:溶剂挥发阶段慢速升温,然后快速升温到高温。通过SnCl2作为前驱体之一和银的还原剂,逐层吸附原位得到Ag-ITO多层膜。当ITO溶胶浓度为0.5M时,银溶胶的最佳浓度是0.1M。GISAXS结果显示,ITO层的形成符合扩散限制聚集(DLA)模型,然后通过金属诱导效应形核、长大;而Ag层开始由反应控制聚集(RLA)形成,然后在热激发下,与附近的原子交换位置发生交换机制,同时避免了Ag粒子间的聚结长大。随着热处理温度的升高,Ag相的形核密度存在一个“V”型变化,转折点在900℃。热处理过程中,在升温阶段,多层薄膜中的Ag粒子/团簇的形核、生长符合扩散-换位-再扩散-再换位生长模型;而在保温阶段,Ag粒子/团簇的生长主要发生再换位过程,导致关联距离增大,分形维数降低。以十二烷基苯磺酸钠和氨水的混合液作为表面活性剂,对纤维材料进行表面处理,一定程度上提高了纤维表面的负电荷性,另外通过每层吸附后用乙醇冲洗的方式解决“挂胶”问题。纤维表面沉积后得到薄膜材料致密、均匀,且具有比较好的热稳定性。ITO薄膜的孔隙率对其2.5-7.5μm区间的半球反射率有决定性作用,但在孔隙率相差不大时,薄膜表面粗糙度对其的影响才表现出来。随着热处理温度的升高,Ag-ITO多层薄膜在1-2.5μm区间其半球反射率呈现“N”型变化,而随着保温时间的延长,其半球反射率略有降低,并运用激活隧道理论解释了此过程。可见,800℃的热处理温度是最佳处理温度。利用压片法得到镀膜纤维的透过率,发现随着热处理温度的升高以及保温时间的延长,其透过率都会下降。通过Rossland平均理论以及光厚近似假设,计算得到纤维隔热材料在沉积Ag-ITO多层膜后其辐射传热可以降低30%左右。
论文目录
相关论文文献
- [1].圆形薄膜预应力测量[J]. 工程塑料应用 2020(03)
- [2].低光泽度热隐身光子晶体薄膜[J]. 真空科学与技术学报 2019(11)
- [3].铁酸铋薄膜的电学特性及掺杂影响分析[J]. 化工新型材料 2017(03)
- [4].有限尺寸硬薄膜/软基底的屈曲分析[J]. 力学季刊 2017(02)
- [5].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2015(06)
- [6].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2016(01)
- [7].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2016(02)
- [8].国际薄膜大会Thin Films 2016[J]. 真空 2016(03)
- [9].可怜的小鸭子[J]. 意林(少年版) 2013(11)
- [10].大棚薄膜破损咋修补[J]. 农业知识 2009(29)
- [11].基于电化学聚合方法制备荧光薄膜及其在爆炸物检测中的研究[J]. 化学与粘合 2020(01)
- [12].欧洲开发抗菌薄膜[J]. 绿色包装 2020(07)
- [13].谈一谈薄膜数字印刷的优势和成本考量[J]. 印刷技术 2019(03)
- [14].薄膜传输系统导向辊牵引特性研究[J]. 西安理工大学学报 2016(04)
- [15].铁酸铋薄膜退火工艺研究进展[J]. 表面技术 2017(02)
- [16].电沉积制备镍-铁薄膜及其性能的研究[J]. 电镀与环保 2017(04)
- [17].原子层沉积二硫化钼薄膜的机理及生长薄膜的质量[J]. 东南大学学报(自然科学版) 2017(05)
- [18].2014年全球特种薄膜销售额将达到297.7亿美元[J]. 印刷技术 2010(02)
- [19].中国进口薄膜级HDPE供应将趋紧[J]. 塑料工业 2010(07)
- [20].一种Sb_2S_3热电薄膜的制备方法[J]. 电镀与精饰 2009(07)
- [21].管状弹簧介电薄膜作动器粘弹性变形研究[J]. 甘肃科学学报 2019(06)
- [22].薄膜基荧光传感检测的研究进展[J]. 中国科学:化学 2020(01)
- [23].烧结氛围对铜锌锡硫硒薄膜性质的影响[J]. 内蒙古师范大学学报(自然科学汉文版) 2020(03)
- [24].少层二硫化钼薄膜的制备及其光谱特性[J]. 半导体技术 2020(09)
- [25].薄膜生产中防止薄膜粘连应用研究[J]. 中国设备工程 2020(18)
- [26].“长寿薄膜”问世 寿命高达25年[J]. 橡塑技术与装备 2017(04)
- [27].基于动力学标度法的a-C:H薄膜表面微观形貌的演变机理研究[J]. 原子能科学技术 2017(04)
- [28].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 化工管理 2014(34)
- [29].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 分析测试学报 2014(12)
- [30].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 企业技术开发 2014(34)