论文摘要
自然界中微生物体内的铁铁氢化酶能够可逆催化质子还原产氢,晶体和红外光谱研究表明其活性中心具有双八面体的蝶状几何构型,与早有研究的金属有机配合物[Fe2(μ-SR)2(CO)6-nLn]非常相似。因其简单的结构组成和高催化性能,铁铁氢化酶活性中心的结构和功能模拟引起了生物无机化学家们极大的兴趣。人们力求进一步揭示铁铁氢化酶催化产氢的机理,并最终制得廉价高效的制氢催化剂。本论文主要合成了一系列二铁配合物作为铁铁氢化酶活性中心的结构和功能模型。为考察桥连配体中硫原子的替换对模型配合物性质的影响,合成了3个氮杂桥连[2Fe2Se]模型配合物[{(μ-SeCH2)2NC6H4R}Fe2(CO)6](R=4-NO2,7;R=H,8;R=4-CH3,9)。X射线单晶衍射表明配合物7-9的分子构型与其对应的[2Fe2S]类似物[{(μ-SCH2)2NC6H4R}Fe2(CO)6](R=4-NO2,7s;R=H,8s;R=4-CH3,9s)非常相似。红外光谱和电化学循环伏安曲线表明将桥连配体中硫原子替换成硒原子增大了中心铁原子上的平均电子云密度。选择配合物9考察催化活性时发现,在对甲苯磺酸(HOTs)的存在下,配合物9有着比其[2Fe2S]类似物9s略高的电催化质子还原活性。基于光驱动电子转移还原质子产氢的构想,合成了3个连接苯并噻唑类有机光敏体[2Fe2S]模型配合物16-18。为进一步考察光敏体和[2Fe2S]单元的电子相互作用,合成了3个参比化合物16r-18r。利用吸收和发射光谱及闪光光解研究了配合物16-18及参比化合物16r-18r的光物理性质。与16r及16r和等摩尔[(μ-S)2Fe2(CO)6]的混合物相比较,配合物16的荧光光谱产生淬灭,并且配合物16的常温激发态寿命要短于16r。这些结果表明配合物16中光敏体和[2Fe2S]单元之间发生了分子内能量转移。通过配体取代将水溶性三吗啉膦(TMP)引入到[2Fe2S]模型配合物中,合成了单取代配合物[(μ-pdt)Fe2(CO)5(TMP)](20)和双取代配合物[(μ-pdt)Fe2(CO)4(TMP)2](21)。红外光谱表明TMP配体比其它膦配体(如PMe3,PTA,PPh3)具有更强的供电子能力。电化学循环伏安曲线表明:乙酸存在条件下,配合物20和21在乙腈/水混合溶液体系中的催化质子还原活性要高于在纯乙腈中催化活性,并且在乙腈/水(10:1,v/v)中达到最高。通过Fe3(CO)12与2,3-二巯基吡嗪在四氢呋喃中回流反应将刚性共轭桥连结构引入到[2Fe2S]模型配合物中,合成了配合物[μ-SC4N2H2S-μ]Fe2(CO)6(24)。在对配合物24进行PMe3配体取代时,得到了其单取代配合物[μ-SC4N2H2S-μ]Fe2(CO)5(PMe3)(26)和一种意外的单核铁配合物[μ-SC4N2H2S-μ]Fe(CO)2(PMe3)2(25)。分离得到了配合物24和25的质子化产物24H+、25H+和25H22+,并通过X射线单晶衍射表征了3种质子化产物的结构,质子化过程则通过UV/Vis、IR和NMR光谱跟踪。电化学研究表明刚性共轭桥连结构能够降低[2Fe2S]模型配合物的还原电位,配合物24的第一还原电位为-1.19 V(vs.Fc/Fc+)。所有合成的化合物均通过红外光谱、核磁和高分辨质谱的表征。其中配合物7-9、16-18、20、21、24-26、24H+、25H+和25H22+通过X射线单晶衍射测定了分子结构。