论文摘要
本论文回顾了建筑立面条件和与建筑外墙相关的各种要素,并进一步的调查了夏热冬冷地区的立面条件,以及致使此种气候区域的建筑立面设计成为一个复杂课题的非典型性的气候特征,并引进与分析了应对该气候特征的立面设计概念。研究途径包括两套,一是综合的分析研究,二是从建筑师和施工者的角度探寻应用性强、说明性好的的定量的信息知识的设计导向概念。一方面本文专注于围绕着现代创新趋势的边界法则的立面设计,另一方面通过适用于夏热冬冷地区的能效立面设计,包括多层表皮系统在该地区的实验。夏热冬冷地区间的气候特征差异很大且较易出现极值现象,尤其是在夏季与冬季,此时适应于一般炎热或者寒冷地区的气候应对策略在此种气候地区内都不会同时对两种极端气候条件生效。已有的研究已表明室内空间的简单条件基本取决于建筑外墙的外露面积。基于上述结论,本文研究了这些极端气候条件下的室内、外情况并介绍了双层表皮气候适应性外墙理论,可以通过优化墙体绝热性能以改善夏热冬冷地区的室内空间条件。在实验部分,研究利用外墙温度改进模型与仪器测算了传统双层玻璃幕墙外墙的室内、外的温度条件,研究结果与炎热及严寒时期热辐射极值的预期条件一致。武汉市作为夏热冬冷地区典型代表而被选作本试验的试验地点,武汉被作为夏热冬冷地区双层气候适应性外墙的模型。模型的外墙表面热量测算及其结果与传统武汉的居住建筑及传统的双层玻璃幕墙相比较。测试与计算选取的时间是在热舒适度的极值被超过的极热的时期(8月)和热舒适度的低限尚未达到的极冷时期(1月)。实验应用立面的内表面和外表面温度值、空气温度值、空气湿度值作为评估立面性能的参数。进一步的计算与模拟使用PHOENICS-VR环境,为了在模拟环境下验算试验结果。结果表明双层适应性建筑立面(外墙)设计,其功能似一个屏障,有效地在夏季阻隔热辐射进入室内并在冬季保存室内热量的散失。最后,设计建议以类型学和优化技术为形式,将双层适应性建筑立面应用在夏热冬冷地区的住宅设计之中。
论文目录
AcknowledgementsTable of contentsList of Table captionsList of Figure captionsGlossary摘要Abstract1 Introduction1.1 Study Background1.2 Significance and Objective of present study1.3 Scope of present study1.3.1 Study scope1.3.2 Limitations1.4 Structure of thesis1.4.1 Conceptual framework1.4.2 Theoretical framework1.4.4 Outline of Thesis Chapters1.5 Research Hypothesis2 Literature Review2.1 Brief Historical overview of multi-facade design2.2 Evolution of Intelligent building skin systems2.3 Climate structure of Cold-Winter/Hot-Summer Regions2.3.1 China's HSCW climate zone outline2.3.2 Winter climate characteristics2.3.3 Summer climate characteristics2.4 Heat transfer coefficient and index of thermal inertia of building envelopes in HSCW zone2.5 Energy budget of buildings in HSCW region2.6 Thermal comfort2.6.1 Solar radiation2.6.2 Thermal comfort index2.6.3 Human energy balance2.6.4 The thermal values in HSCW regions,its effects on building facades and indoor comfort2.7 Configuration of building skins and intelligent facade designs2.7.1 Bio-tectonic principles in facade design for extreme climates2.7.2 Changeable skin concept in facade design2.8 Principles of Surfaces in Building envelope design2.8.1 Classification of surface design principles2.8.2 Types of surfaces2.9 Context of double skin facade structures2.9.1 Review of the evolution trend of double skin facades2.9.2 Major functions of multi-skin facades2.9.3 Optimization theory of double skin facades2.10 Thermal theories and studies2.10.1 Direct radiation2.10.2 Conduction and Convection2.10.3 Air infiltration2.11 Principles governing wind,thermal currents and natural ventilation2.12 Air flow and velocity due to natural draft2.13 Summary of chapter 23 Research Methodology3.1 Data collection3.2 Input system3.3 Output system3.4 Problem identification3.5 Evolution of Strategies for enhancing performance4 Study on Traditional facade structure of typical HSCW and other significant conventional facade systems4.1 Characteristics of the typical facade structure in the case of Wuhan city4.1.1 Solid facades4.1.2 Glazed facades4.1.3 Box window facades4.1.4 Strip windows4.1.5 Balcony facades4.2 Relevance of study to the present research4.3 Classification in the thermal environment design of buildings4.4 Previous work;Case study on energy efficiency research in HSCW zones4.5 Analysis of the typical HSCW residential building facde system,using Wnhan as a case4.5.1 Summer analysis4.5.2 Winter analysis4.6 Impressions from traditional living environments4.7 Summary of chapter 45 Study on Conventional Double Skin Facade system5.1 Concepts and characteristics of Conventional DSF5.1.1 Ventilated double window5.1.2 Facade partitioned per storey with adjacent modules5.1.3 Corridor-type ventilated DSF5.1.4 The Shaft-box ventilated double facade5.1.5 Multi-storey ventilated double skin facade5.1.6 Multi-storey louver,naturally ventilated double facade5.2 Relevance of study5.3 Study on Glazed Double skin facade & performance investigation5.3.1 Underlying principles in Glazed double skin system5.3.2 Classification of design principles5.4 Case study on previous research on glazed double skin facades5.4.1 University of Michigan Medical School's BiomedicalScience Research Building5.4.2 HSCW building box experiment5.5 Structural and material Analysis5.5.1 Material analysis5.5.2 Selection of Glass5.5.3 Structural analysis5.6 Optimization design and performance enhancement5.6.1 Building physics5.6.2 Energy conservation and thermal comfort5.7 Glazed double skin facade experiment in HSCW environment5.7.1 Experiment setup scheme5.7.2 Summer analysis5.7.3 Winter analysis5.7.4 Simulation analysis using PHOENICS-VR tool5.8 Summary and Results/findings of chapter 56 The Climate-active facade design and experiment6.1 Review of the factors that influence efficiency of a facade system6.2 Concept of the double-skin climate-adaptive facade6.2.1 Configuration of the facade6.2.2 Material composition6.2.3 Structure of the Sandwich-Polyurethane insulation board6.3 Aim of the Climate active facade experiment6.4 Experiment setup scheme6.5 Accessories and parameters for the experiment6.5.1 Accessories6.5.2 Assessment Parameters6.6 Thermal Experimental measurements6.6.1 Summer measurements6.6.2 Winter measurements6.7 Summary of results6.8 Simulation of results using PHOENICS-VR6.8.1 Aim of the simulation tests6.8.2 Ventilated cavity simulation6.9 Comparative analysis6.9.1 Comparing the results of the experiment model to typical Wuhan HSCW buildings6.9.2 Comparing results with glazed double-skin facade6.10 Economic evaluation of the double-skin climate-adaptive facade6.10.1 Procedure for economic analysis6.10.2 Concept of covering the costs of alternatives in entirety6.10.3 Cost determinants for Climate active double skin facades for HSCW regions6.10.4 Features of an economical climate active facade7 Architectural context7.1 Design factors7.1.1 Use of seasonal solar path information7.1.2 Effective orientation of indoor spaces7.2 Classification and definition of typology7.2.1 Typology based on type of ventilation7.2.2 Typology based on partitioning of the facade7.2.3 Typology based on ventilation mode of the cavity7.3 Fenestration design7.3.1 Combining the CAF and glazed DSF principles in Residential building design7.4 Optimization for ventilation and insulation system7.4.1 Air flow7.4.2 Air tightness7.5 Concluding remarksBibliographyBooksJournalsConference proceedingsPh.D.DissertationWeb sitesCurriculum Vitae(CV) and Academic PublicationsAppendixSymbolsVocabulary and DefinitionsResearch work Table
相关论文文献
- [1].夏热冬冷地区居住建筑合理开窗与冬季节能的探析[J]. 门窗 2019(15)
- [2].夏热冬冷地区绿色校园适宜技术调查研究[J]. 重庆建筑 2020(03)
- [3].夏热冬冷地区的温度难题[J]. 能源 2020(05)
- [4].夏热冬冷地区立体绿化与住宅能耗及适用性研究——以上海为例[J]. 建筑技艺 2020(07)
- [5].夏热冬冷地区绿色建筑技术运用与问题研究论述[J]. 绿色环保建材 2017(09)
- [6].中国夏热冬冷地区绿色建筑技术应用分析[J]. 建材与装饰 2016(17)
- [7].被动房在夏热冬冷地区应用策略初探[J]. 建设科技 2016(12)
- [8].夏热冬冷地区绿色建筑技术应用问题研究[J]. 资源节约与环保 2014(11)
- [9].夏热冬冷地区典型城市住宅供暖模式选择研究[J]. 西安建筑科技大学学报(自然科学版) 2014(06)
- [10].未来的房子[J]. 科学启蒙 2011(05)
- [11].夏热冬冷地区居住建筑节能技术适用性分析[J]. 中国设备工程 2020(20)
- [12].夏热冬冷地区既有公共建筑窗户节能改造技术优化研究[J]. 城市建筑 2019(23)
- [13].夏热冬冷地区“供热工程”课程内容体系改革实践与建议[J]. 科教导刊(下旬) 2020(02)
- [14].夏热冬冷地区农村住宅室内热湿环境实测与分析[J]. 农村经济与科技 2020(07)
- [15].夏热冬冷地区的居住区绿色建筑适宜技术研究——以合肥市某小区为例[J]. 工程技术研究 2017(09)
- [16].夏热冬冷地区既有居住建筑节能改造综合效益分析[J]. 建筑科学 2017(08)
- [17].夏热冬冷地区绿色建筑被动式节能探讨[J]. 科技资讯 2015(29)
- [18].夏热冬冷地区冬季采暖的研究进展分析[J]. 南方农机 2016(06)
- [19].夏热冬冷地区住宅供暖是民生工程[J]. 建设科技 2015(02)
- [20].夏热冬冷地区建筑设计节能措施[J]. 四川水泥 2015(10)
- [21].浅谈夏热冬冷地区既有建筑屋面节能改造[J]. 城市建筑 2013(22)
- [22].适合夏热冬冷地区的新型双高效热泵系统[J]. 制冷与空调 2013(11)
- [23].夏热冬冷地区供暖专栏征稿启事[J]. 暖通空调 2013(11)
- [24].夏热冬冷地区实施集中供热面临的问题[J]. 煤气与热力 2014(04)
- [25].夏热冬冷地区既有居住建筑节能改造技术导则(试行)印发[J]. 墙材革新与建筑节能 2013(01)
- [26].《夏热冬冷地区既有居住建筑节能改造技术导则》解读[J]. 建设科技 2013(13)
- [27].住建部、财政部出台实施意见 推进夏热冬冷地区既有居住建筑节能改造[J]. 墙材革新与建筑节能 2012(05)
- [28].财政部、住房和城乡建设部联合印发实施意见——推进夏热冬冷地区既有居住建筑节能改造[J]. 建设科技 2012(09)
- [29].住房和城乡建设部、财政部出台《关于推进夏热冬冷地区既有居住建筑节能改造的实施意见》[J]. 建筑工人 2012(05)
- [30].《夏热冬冷地区既有居住建筑节能改造技术导则》征求意见[J]. 建设科技 2012(15)
标签:双层表皮论文; 气候适应性立面论文; 节能论文; 建筑表皮论文; 夏热冬冷地区论文;
气候适应性的建筑表皮:夏热冬冷地区多层表皮建筑立面系统研究
下载Doc文档