论文摘要
在对更快、更小和更高性能的电子设备的需求驱动下,微电子工业高速发展。集成电路的特征尺寸以及用于不同电路之间连接的印刷电路板的尺寸都在不断缩小,使得很多传统微电子材料与技术都面临巨大的挑战,需要通过新材料、新技术的研究与应用,从而保证微电子行业的可持续快速发展。集成电路的互补型金属-氧化物-半导体CMOS技术中,传统的SiO2栅介电材料已经逼近其厚度极限,寻找新型高介电常数的替代材料,是半导体工业迫在眉睫的任务。多种高介电栅介质候选材料得到广泛研究。其中,氧化铪(HfO2)已成为高介电栅介质的最有希望的竞选材料之一,是当前high-k材料研究的热点。然而,单一HfO2存在结晶温度较低、易在界面处形成低介电常数硅酸盐、载流子迁移率低等问题。人们通过在HfO2中掺入N、Si、Al、Ti、Zr等元素来提高其性能。与半导体工艺兼容的原子层沉积(ALD)和化学气相沉积(CVD)方法已成为制备high-k薄膜最主要的两种技术,有机前驱体带来的碳污染问题是限制ALD和CVD薄膜性能提高的重要因素。本文选取Hf-Al-O和Hf-Zr-O复合薄膜,以无水硝酸盐为前驱体,采用ALD和CVD方法制备了这两种复合薄膜,对其生长特性、薄膜成分与结构、热稳定性和电学性能等,进行了较为深入的研究。快闪存储器是目前非挥发性存储器的主流器件。但随着器件尺寸的不断缩小,基于传统浮栅结构的快闪存储器在继续等比例缩小方面受阻,新型电荷俘获存储器成为下一代快闪存储器的有力竞争者。传统的电荷俘获型存储器以SONOS (Si/SiO2/Si3N4/SiO2/Si)结构为代表,但其较差的保持性能是制约其进一步发展的关键。因此,很多半导体公司和研究机构致力于对传统SONOS结构中的隧穿层、电荷俘获层、阻挡层等进行改进,以获得新型电荷俘获型存储器,使得其在具有较好的保持性能下,能有更快的编程/擦除速度和更低的操作电压。本文采用分子原子沉积(MAD)技术制备Al2O3薄膜,作为隧穿层和阻挡层,获得MANAS (Metal/Al2O3/SiNx/Al2O3/Si)新型电荷俘获型存储器,对存储器的存储与保持性能以及Al2O3薄膜的结构与电学性能进行了深入的分析研究。随着微电子工业的不断发展,用于电路之间连接的印刷电路板也不断向高密度和小型化的方向发展。与微通孔技术相结合的积层多层板技术中,用于连接层间线路的通孔也变得越来越小,深径比越来越大,对填充于微通孔中电镀铜的性能要求也越来越高。由于微观结构对宏观性能的影响巨大,所以对电镀铜微观结构的研究也成为微电子工业关注的热点。此外,电镀铜在电镀完成后,于室温下会发生所谓“自退火”现象,对电镀铜的结构、取向以及宏观性能等产生了很大的影响,因此对电镀铜自退火现象的研究也深受关注。本文采用多种分析表征手段,对印刷电路板微通孔中的电镀铜微观结构进行了表征研究,同时追踪了电镀铜的自退火过程,并对此过程中晶粒取向的变化进行分析讨论。本论文主要成果如下:1.成功合成了具有良好挥发性且不含碳的无水硝酸铪和铪锆复合硝酸盐,以无水硝酸铪作为Hf源,以TMA为Al源、H20为氧源,用ALD方法制备了Hf-Al-O复合薄膜。改变薄膜中Hf的含量,薄膜的等效氧化物厚度、平带电压、电压回滞、漏电流等电学性能指标也随之线性变化。无水铪锆复合硝酸盐中的硝酸铪和硝酸锆主要以固溶体的形式存在,Hf/Zr组分比为1.72:1。采用此复合前驱体,分别用ALD和CVD方法成功沉积了Hf-Zr-O复合薄膜,并研究了薄膜的各项性能。其中,ALD方法制备的薄膜中Hf/Zr组分比约为1:4,与复合前驱体中的组分比差别较大;而CVD薄膜中Hf/Zr组分比与前驱体中的非常吻合。我们认为同一复合前驱体在不同沉积方法中的不同表现可能源于两种沉积技术不同的沉积原理以及对反应前驱体的不同要求。CVD方法制备Hf-Zr-O复合薄膜的结果表明无水铪锆复合硝酸盐是一种有效的沉积双金属氧化物的无机前驱体,其蒸气可以同时稳定地输运两种金属元素。2.采用MAD方法生长trap-less的Al2O3 (MADAl2O3),取代SONOS结构中的隧穿层和阻挡层SiO2,制备出MANAS型电荷俘获存储器结构单元。MADAl2O3薄膜的电学和结构成分测试表明,薄膜与Si衬底之间具有平整的界面和低的界面态密度,以及相对较高的导带偏移量(3.9eV)和较低的价带偏移量(2.1eV),并且薄膜的J-V曲线与温度无关,几乎没有电场应力诱导漏电流的存在,可认为薄膜中没有电荷陷阱,电荷传输符合FN隧穿机制。由于隧穿层和阻挡层的优异性能,MANAS型存储器实现了FN隧穿机制的编程/擦除操作,经过+12V/100μs的编程脉冲即实现5.6V的编程窗口,-12V/10ms的擦除脉冲获得6V的擦除窗口,且没有擦除饱和现象。MANAS型存储器仅用±11V的操作电压就可以实现目前最先进SONOS型非挥发存储单元需要士17V才可以达到的编程/擦除窗口;并且经过105个编程/擦除循环后,存储窗口几乎没有什么变化,具有很好的耐久性能。此外,MANAS型存储器对数据具有优异的保持性能,在从室温到2500C的高温下,分别经过+10V/100μs的编程脉冲和-10V/10ms的擦除脉冲后,在1-104sec的时间范围内其衰退速率分别仅为-0.24V/dec和+0.11V/dec,并且在10-41sec的短时间内也具有很好的保持特性。3.采用背散射电子衍射(EBSD)和聚焦离子束(FIB)等方法,对用于微通孔的电镀铜进行了微观结构的表征,比较了使用不同添加剂A、B、C电镀的铜样品在经过浮焊测试后的不同表现:采用添加剂A和B的电镀铜样品在通孔拐角处出现了细小裂纹,且只在互连铜内延伸一小段即终止,表现出良好的抗高温性能;而采用添加剂C电镀的铜样品通孔中的化学镀铜和电镀铜出现很大的裂缝,贯穿整个电镀层,使镀层几乎被割裂开,表明其承受高温的能力较弱。采用X射线衍射(XRD)技术,追踪了一定条件下制备的电镀铜样品的自退火过程,并结合EBSD技术,对此过程中电镀铜的结构变化进行了表征。发现电镀铜样品经过自退火,发生了从<110>织构到<311>织构的转变。对这一转变的机制进行了仔细研究,并将此变化过程解释为:电镀液中的添加剂、电镀参数和<110>晶向为主的多晶衬底铜等因素综合作用,使得刚电镀完的多晶铜样品以<110>晶向为主;经过“自恢复”阶段后,电镀铜的晶粒长大,同时多晶样品中的<110>晶向先通过孪晶变化关系而转变为<411>晶向,接着在减小表面能的驱动下,再转过6°变为<311>晶向,从而实现电镀铜样品从<110>织构到<311>织构的转变。集成电路作为信息产业的基础和核心,已成为当前国际竞争的焦点和衡量一个国家综合国力的重要标志。国家科技重大专项《极大规模集成电路制造装备及成套工艺》于2009年启动,目前,在这一领域我国拥有的自主知识产权的材料与技术严重不足。本论文的工作集中研究的几种微电子材料的制备、表征与性能,对探索新型微电子材料在下一代集成电路中的应用,促进我国集成电路的发展,具有重要参考价值。
论文目录
相关论文文献
标签:高介电栅介质薄膜论文; 无水硝酸盐论文; 原子层沉积论文; 化学气相沉积论文; 电荷俘获型存储器论文; 背散射电子衍射论文; 电镀铜论文; 自退火论文;