论文摘要
虽然流化催化裂化(FCC)工艺已经商业化超过60年,但是该技术仍在不断的发展以适应新的挑战。本研究提出并描述了FCC汽油吸附脱硫用的沸石吸附剂及其工艺的研究进展。为了减少液体碳氢燃料中的硫含量以加强环境保护,在镍锌脱硫吸附剂上对模拟FCC汽油进行了S-Zorb吸附。首先制备了一系列沸石吸附剂,并对它们的噻吩吸附脱硫能力进行了测试。这些吸附剂对噻吩脱除具有显著的选择性。在进一步的工作中,为筛选更好的吸附剂,用氮气吸附法对吸附剂的比表面积,总孔体积以及孔大小和平均孔径进行了分析。同时用X-射线衍射,热重分析对催化剂进行了表征。X-射线衍射图表明,ZnO颗粒与氧化镍颗粒按一定比例很好地分散在了HY沸石上,并表现出较高的结晶度。TPR等分析还显示,在350℃以上时,由于负载的Ni2+减少而减少了氢气的消耗量。在活性评价时,反应温度,压力和氢油比都在脱硫中起到了关键作用,并且吸附剂脱硫率保持在90%以上。
论文目录
ABSTRACT摘要Chapter Ⅰ Introduction and backgroundChapter Ⅱ Literature review2.1 Type of sulfur and distribution in gasoline2.2 FCC gasoline hydrodesulfurization technologies2.2.1 Conventional hydrodesulfurization2.2.2 Selective hydrodesulfurization2.2.3 Deep hydrodesulfurization combined with octane recovery processing2.3 FCC gasoline non-hydrodesulfurization technologies2.3.1 Alkylation desulfurization2.3.2 Extractive desulfurization2.3.3 Oxidative desulfurization2.3.4 Complexation desulfurization2.4 FCC gasoline adsorption desulfurization technologies2.4.1 Research progress in the adsorbent materials2.4.2 Research progress of sorbent technology2.5 Experimental contentsChapter Ⅲ Experimental part3.1 Experimental reagents3.2 Adsorbent and model feed preparation3.2.1 Carriers and Chemical reagents3.2.2 Adsorbent precursor preparation3.2.3 Preparation of the model solution3.3 Experimental process and methods3.4 Experimental Conditions3.4.1 Reduction conditions3.4.2 Reaction conditions3.4.3 Gas chromatographer operating set3.5 List of the reaction equipments used3.6 Experiment devises description3.6.1 Temperature controller3.6.2 Experimental reactor3.6.3 Experiment analytical instrument3.7 Adsorbent screening analytical instrumentChapter Ⅳ Experimental results and discussion4.1 Experimental study on zeolite adsorbents desulfurization performance4.1.1 Different zeolite adsorbents desulfurization performance test4.1.2 Summary on the different zeolite adsorbents desulfurization test4.2 Experimental study of HY-zeolite adsorbent desulfurization performance4.2.1 Effect of Zn/Ni molar ratios on the sorbent desulfurization performance4.2.2 Characterization of different Zn/Ni molar ratios adsorbents4.2.3 Summary of different Zn/Ni molar ratios effects4.2.4 Effect of carrier different proportions on the adsorbent desulfurization performance4.2.5 Adsorbents Nitrogen adsorption test4.2.6 Summary of carrier different proportions effect on the adsorbent desulfurization performance4.3 Effect of calcination temperatures on the adsorbents desulfurization performance4.3.1 Summary of calcination temperatures effect4.3.2 Adsorbent thermogravimetric analysis (TGA)4.4 Effect of catalyst reduction time on the adsorption desulfurization performance4.4.1 Summary of catalysts reduction times effect4.4.2 Temperature programmed reduction (TPR) of catalyst4.5 Effect of reaction conditions on the adsorption desulfurization performance2/Oil ratios on the adsorption desulfurization performance'>4.5.1 Effect of H2/Oil ratios on the adsorption desulfurization performance2/Oil ratios effect on the adsorption desulfurization performance'>4.5.2 Summary of H2/Oil ratios effect on the adsorption desulfurization performance4.5.3 Effect of reaction temperatures on the adsorption desulfurization performance4.5.4 Summary of reaction temperatures effect on the adsorption desulfurization performance4.5.5 Effect of reaction pressures on the adsorption desulfurization performance4.5.6 Summary of reaction pressure effect on the adsorption desulfurization performance4.6 XRD analysis for ZnO/NiO adsorbent before and after desulfurization reactionConclusionReferencesAcknowledgment卷内备考表
相关论文文献
- [1].更环保的国Ⅴ汽油,你了解多少?[J]. 消费者报道 2015(01)
- [2].浅析出口汽油常规项目中特殊质量指标及检验结果[J]. 炼油与化工 2019(05)
- [3].火场中汽油的高效液相色谱图分析[J]. 武警学院学报 2019(10)
- [4].选择性汽油加氢工艺流程分析及应用对策研究[J]. 化工管理 2020(15)
- [5].92、93、95、97号汽油到底有什么区别?[J]. 石油知识 2020(03)
- [6].中国推广汽油清净剂的再思考与建议[J]. 化工管理 2020(16)
- [7].突发事件应急处置——汽油泄漏[J]. 宁波化工 2020(03)
- [8].南京国民政府“汽油节约”运动述论(1947—1949年)[J]. 乐山师范学院学报 2020(07)
- [9].汽油调和方案的优化[J]. 石化技术与应用 2017(01)
- [10].汽油在线调和优化技术的分析[J]. 化工管理 2017(03)
- [11].93号汽油蒸气绝热燃烧温度的计算分析[J]. 后勤工程学院学报 2017(02)
- [12].常见塑料燃烧残留物对汽油GC-MS鉴定结果影响的研究[J]. 消防技术与产品信息 2017(04)
- [13].关于大中型炼油厂汽油调和系统配置的若干建议[J]. 广东化工 2017(07)
- [14].绿色环保汽油吸人眼球[J]. 石油石化节能 2017(04)
- [15].汽油加氢生产工艺的对比和分析[J]. 化工管理 2017(09)
- [16].关于汽油中含有微量水分的研究[J]. 化工管理 2017(15)
- [17].分子水平预测汽油馏分的蒸气压[J]. 石油学报(石油加工) 2017(04)
- [18].汽油安定性影响因素浅析[J]. 中国石油和化工标准与质量 2017(12)
- [19].汽油调和方案的优化[J]. 化工管理 2016(29)
- [20].催化轻汽油醚化技术能耗对比研究[J]. 辽宁化工 2015(05)
- [21].植物汽油提取器[J]. 小学生(上旬刊) 2019(11)
- [22].汽油是怎么得来的[J]. 小学阅读指南(低年级版) 2018(06)
- [23].汽油是怎么得来的[J]. 小学阅读指南(高年级版) 2018(06)
- [24].植物汽油果[J]. 科学启蒙 2016(Z1)
- [25].“有毒汽油”不除 健康谁来呵护[J]. 创新时代 2015(06)
- [26].惠州炼化高标号汽油调和方案分析[J]. 化工管理 2013(24)
- [27].印尼汽油缺口将改变全球汽油市场格局[J]. 炼油技术与工程 2013(12)
- [28].汽油涨价了[J]. 数学大世界(教师适用) 2012(06)
- [29].能提供能量的不只是汽油和电[J]. 少儿科学周刊(儿童版) 2013(03)
- [30].二氧化碳变汽油,听上去很酷[J]. 科学大众(中学生) 2013(05)
标签:汽油论文; 脱硫论文; 吸附论文; 噻吩论文; 分子筛论文;