《伤寒论》的“方—证要素”对应体系及其神经网络数学模型的构建

《伤寒论》的“方—证要素”对应体系及其神经网络数学模型的构建

论文摘要

本研究乃是根据“证候要素、方剂要素”最新研究进展、与计算机领域的人工智能技术相结合来研究伤寒论的处方,建立一套能处理伤寒论“方-证要素对应、主证-药物对应”的数学模型,分述如下。目的(1)将伤寒论处方结构分析,并建立“证候要素、方剂要素、方-证要素对应、主证-药物对应”体系。(2)以人工神经网络来建立整个伤寒论“主证-药物对应”的数学模型。(3)以人工神经网络来建立整个伤寒论“方-证要素对应”的数学模型。系统数学模型:Yj=输出变数向量,即是伤寒论的方剂要素(或药物)Xi=输入变数向量,即是伤寒论的证候要素(或主证)f=人工神经网络神经元模型的转换函数wij=模仿第i个与第j个生物神经元间的突触强度(即连结加权值)θj=模仿第j个生物神经元的阀值(即门限值)(4)将大量的“证候要素、方剂要素、方-证要素对应、主证-药物对应”等数据汇入神经网络模型内,让系统不断学习后,即可获取每个参数的权值与阀值,如此的伤寒论“方-证要素对应、主证-药物对应”数学模型,即可有推算预测处方药物的功能,对于辅助教学与临床诊治具有一定参考价值,可供后续萃取其中的知识与信息,为更好地继承与发扬仲景学术,提供方法学借鉴。方法(1)系统所需计算机程序皆是自行编写开发,采用Microsoft Visual Studio C#. NET 2008结合SQL Server 2008与Access 2007数据库来开发系统所需要的功能。(2)并采用神经网络技术其中的一种数学算法倒传递网络(Back Propagation Network, BPN)来建立整个数学模型。(3)建立“证候要素、方剂要素、方-证要素对应、主证-药物对应”体系,并将这些对应资料汇入神经网络模型内。(4)经由系统不断的训练学习后,即可获取每个神经元节点的权值与阀值,从而构建伤寒论“方-证要素对应、主证-药物对应”体系的数学模型。结果与结论(1)本研究以《伤寒论讲义》“十一五”规划教材为蓝本来进行《伤寒论》处方的结构化分析,药性归类依据乃是以中国药典2005年版的内容为准。从伤寒论处方结构化分析后的大规模数据中可以得到多种互为对应的讯息,例如:方-证要素对应关系、主证-药物对应关系、方-药对应关系、方-证对应关系.等等,本研究将只针对其中的“方-证要素对应关系、主证-药物对应关系”分别建立伤寒论的的数学模式,建立数学模式的目的除了可以探讨不同证候与药物等变数之间的定性关联,以及彼此间定量的加重权值外,并可在一旦确定数学模型的权值等参数后,进而将之应用于临床辨证论证的辅助上。(2)以人工神经网络技术建立伤寒论“主证-药物对应关系”的数学模型:方法:先将伤寒论处方的结构化资料撷取其中的主证-药物对应关系,转化成输入x向量(主证,最多有354个神经元节点)与输出y向量(药物,最多有98个节点),经由倒传递神经网络来训练学习后,再求出权值ω与阀值0向量最佳解。最佳解的判别准则乃是以在50000次的计算cycle次数内,若误差均方根函数数值低于0.06,则判定本次学习过程求取到权值Wij与阀值θj向量的最佳解。整个平台乃是在在IBM P4个人电脑与微软作业系统Windows XP的环境下运作,每次的求解计算最少要耗时60分钟以上才能计算完毕。结果:测试后发现在一般维度下可正常运作及计算求解,将求得解的数据加以应用于测试实际的辅助临床推测方药,结果符合预期,初步验证可行。但当神经元节点数过大时会发生无法收敛的现象,后经两种方法共同运用,可改良求解过程的收敛效果,包括:调整学习率参数与使用非线性共轭梯度法,结果可将计算出最佳解的系统维度由(219 x 68)提高到(258 x 74),或输入样本可允许由75个提高到88个。(3)以人工神经网络技术建立伤寒论“方-证要素对应关系”的数学模型:方法:先将伤寒论处方的结构化资料撷取其中的证候要素-方剂要素对应关系,转化成输入x向量(证候要素,最多有160个神经元节点)与输出y向量(方剂要素,最多有83个节点),再经由神经网络来训练学习后求出权值Wij与阀值θj向量的最佳解。结果:测试后发现在一般维度下可正常运作及计算求解,将求得解的数据加以应用于测试实际的辅助临床推测方药,结果符合预期,初步验证可行。但当神经元节点数过大时会发生无法收敛的现象,后经三种方法共同运用,可改良求解过程的收敛效果,分别是调整学习率参数、使用非线性共轭梯度法与采用前次最佳解当作起始值,结果可解出最佳解的系统维度由(129 x 72)提高到(134 x 74),或输入样本可允许由读入196个提高到204个。(4)研究结果显示以神经网络所建立的数学模型,在主证-药物对应系统或方-证要素对应系统皆有推算预测处方药物的功能,对于辅助教学与临床诊治具有一定参考价值,也具有辅助教学的功能,从中可知伤寒论处方之证候与药物等变数间的定性关联,甚至彼此间的定量关系。(5)目前根据伤寒论所分析出的主证-药物对应系统或方-证要素对应系统,出现很多同义或相近词汇的主证(或证候要素),故未来的进一步研究还须要再经过词汇统一或简化的探讨,因为词汇的定义与统一将紧密影响着神经网络学习知识的结果,这些影响都将直接表现在相关联神经元节点的权值与阀值上。这些词义相近的证候包括有:(1)身痛类:周身疼痛、身疼痛、身痛(或重)身体痛。(2)呕逆类:呕恶、呕逆、呕恶、干呕、欲呕吐、呕、心烦喜呕、微呕、吐、呕吐涎沫。(3)口渴咽干类:口渴舌燥、舌上燥而口渴甚、口微渴、咽干口干舌躁、口燥咽干。(4)汗出类:汗出、汗漏不止。(5)烦躁类:心烦、心烦、烦躁、微烦、昼日烦躁不得眠,夜而安静、烦躁、心烦不得安、虚烦不得眠、郁郁微烦、心烦不得卧、烦躁欲死、心烦不得眠、心烦懊憹、心烦失眠、大烦渴不解、烦渴。(6)小便利类:小便自利、小便自利、小便利。(7)发热类:身热不去、发热、翕翕发热。(8)喘息类:喘息、喘、喘咳。(9)下利类:下利不止、下利不止、下利日数十行、自利而渴、下利清谷、下利、下利不止、利、下利不止、下利便溏、泄利不止。(10)腹胀满痛类:少腹拘急硬满、少腹硬满、腹痛、腹胀满、腹大满、腹胀满痛、脘腹冷痛、腹胀满、腹满时痛、腹痛拒按、腹痛绵绵。(11)心悸类:心中悸而烦、心悸、心动悸。(12)心下硬痛类:心下硬痛拒按、心下硬满,按之疼痛、心下痞硬满、胸中痞硬。(13)项强类:颈项强、项背拘急不舒。(14)心下痞类:心下痞、心下痞、心下痞满、心下痞硬、心下痞硬而满、心下痞硬、心下痞满。(15)胸胁苦满类:胸胁苦满、胸胁苦满、胸胁苦满.胸胁满而呕、胸胁满微结、胸胁满闷。(16)手足厥冷类:手足厥冷、肢厥、手足厥寒、手足厥寒、四肢厥逆、手足厥逆、手足厥逆、厥逆无脉、四肢厥逆、手足逆冷、手足寒、四肢厥冷、四肢厥冷。(17)风寒束表类:风寒束表、风寒外束、风寒之邪束表。(6)方-证要素对应系统的收敛效率比主证-药物对应系统的收敛效率好,造成这个现象的第一个原因乃是:方-证要素对应系统是一个小规模的对应关系,而且是“一对多”的对应,但是主证-药物对应系统里面的对应关系,是“多对多”,而且经常是“6对8,或8对7,甚至是6对12”的复杂关系,这么紧密繁杂的对应较难计算到最佳解。第二原因乃是两个系统之人工神经元节点数量不同所致,在方-证要素对应中系统维度为(160 x 60),但在主证-药物对应系统中统维度为(354 x 98),因此后者较难求出最佳解。

论文目录

  • 摘要
  • Abstract
  • 第一部份文献综述
  • 1-1. 神经网络技术在国内中医学界的应用现况
  • 1-2. 数据挖掘方法在国内中医六经辨证与方证对应的应用现况
  • 1-3. 证候要素与方剂要素的研究现况
  • 第二部份专项研究
  • 一、前言
  • 二、研究目的
  • 三、神经网络理论基础
  • 3.1 非线性回归法建模的困难处
  • 3.2 神经网络建模特点
  • 3.3 人工神经网络发展简史
  • 3.4 人工神经网络的应用领域
  • 3.5 生物神经网络与脑神经元
  • 3.6 神经网络神经元模型
  • 3.7 人工神经网络的典型结构
  • 3.7.1 层次型神经网络
  • 3.7.2 互联型神经网络
  • 3.8 神经网络的基本学习方式和学习规则
  • 3.8.1 有监督学习方式
  • 3.8.2 无监督学习方式
  • 3.8.3 联想式学习:Hebb学习规则
  • 3.8.4 纠错式学习:Delta(δ)学习规则
  • 3.8.5 人工神经网络的仿真(回想,推算)
  • 3.9 典型的神经网络模型
  • 3.9.1 感知器神经网络
  • 3.9.2 线性神经网络
  • 3.9.3 BP倒传递神经网络
  • 3.9.4 径向基函数网络
  • 3.9.5 Elman反馈网络
  • 3.9.6 HopfieId反馈网络
  • 四、研究方法与步骤
  • 4.1 本研究所采用的的计算机相关工具
  • 4.2. 进行《伤寒论》证候要素、方剂要素、方-证要素对应体系的结构分析
  • 4.2.1 伤寒论分析根据蓝本
  • 4.2.2 药性归类依据
  • 4.3. 采用BP倒传递网络(Back Propagation Network,BPN)
  • 4.3.1 学习过程数值分析步骤
  • 4.3.2 回想(仿真,推算)过程数值分析步骤
  • 4.4 最陡坡降法(Steepest Descent Method)
  • 4.5 非线性共轭梯度法(Conjugate Gradient Method)
  • 五、研究技术路线
  • 六、研究结果
  • 6.1 伤寒论处方的结构分析
  • 6.2 以神经网络技术来建立主证-药物对应的数学模式y=f(x)
  • 6.2.1 将伤寒论结构分析的结果转换到数据库内
  • 6.2.2 建立主证x向量,药物y向量
  • 6.2.3 让神经网络学习这些主证x向量与药物y向量的关联,从而计算出权值与阀值的最佳解
  • 6.2.4 本研究神经网络的操作参数
  • ij与阀值θj向量,建立伤寒论主证-药物对应的数学模型'>6.2.5 产出权值Wij与阀值θj向量,建立伤寒论主证-药物对应的数学模型
  • 6.2.6 将已经建立好的伤寒论主证-药物对应数学模型,应用于实际的推测方药
  • 6.2.7 比较各种不同的读取输入样本量,对系统求解过程收敛效果的影响
  • 6.2.8 改善求解过程误差均方根收敛效率的方法(1):调整学习率参数
  • 6.2.9 改善求解过程误差均方根收敛效率的方法(2):使用共轭梯度法来计算系统的最佳解
  • 6.3 以神经网络技术来建立"证候要素vs方剂要素"对应的数学模式y=f(x)
  • 6.3.1 将伤寒论结构分析的结果转换到数据库内
  • 6.3.2 建立证候要素x向量,方剂要素y向量
  • 6.3.3 让神经网络学习这些证候要素x向量与方剂要素y向量的关联,从而计算出权值与阀值的最佳解
  • 6.3.4 神经网络操作参数
  • ij与阀值θj向量,建立伤寒论方-证要素对应的数学模型'>6.3.5 产出权值Wij与阀值θj向量,建立伤寒论方-证要素对应的数学模型
  • 6.3.6 将已经建立好的伤寒论方-证要素对应数学模型,应用于实际的推测方药
  • 6.3.7 比较各种不同的读取伤寒论方-证要素对应输入样本量,对系统求解过程收敛效果的影响
  • 6.3.8 改善求解过程误差均方根收敛效率的方法(1)(2):调整学习率参数与使用非线性共轭梯度法
  • 6.3.9 改善求解过程误差均方根收敛效率的方法(3):权值与阀值读取前面最佳解当作目前起始值的改良收敛法
  • 七、讨论
  • 7.1 伤寒论神经网络数学模型,应用于实际推算药物的讨论
  • 7.2 主证-药物对应系统与方-证要素对应系统,两者药物节点数不同的讨论
  • 7.3 主证-药物对应系统与方-证要素对应系统,两者主证词汇简化与统一的讨论
  • 7.4 方-证要素对应系统与主证-药物对应系统,求解过程收敛效率的讨论
  • 八、结论
  • 参考文献
  • 附录A:《伤寒论》方-证要素对应体系的结构分析
  • 附录B:所撰写的程序源码内容
  • 致谢
  • 个人简历
  • 相关论文文献

    • [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
    • [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
    • [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
    • [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
    • [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
    • [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
    • [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
    • [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
    • [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
    • [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
    • [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
    • [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
    • [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
    • [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
    • [15].神经网络探索物理问题[J]. 物理 2020(03)
    • [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
    • [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
    • [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
    • [19].高效深度神经网络综述[J]. 电信科学 2020(04)
    • [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
    • [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
    • [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
    • [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
    • [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
    • [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
    • [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
    • [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
    • [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
    • [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
    • [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)

    标签:;  ;  ;  ;  ;  ;  

    《伤寒论》的“方—证要素”对应体系及其神经网络数学模型的构建
    下载Doc文档

    猜你喜欢