碳纳米管的功能化及聚氨酯复合材料研究

碳纳米管的功能化及聚氨酯复合材料研究

论文摘要

聚氨酯是由聚酯或聚醚多元醇与氨基甲酸酯重复单元形成的嵌段共聚物。作为一类重要的多用途聚合物材料,它不仅拥有优良的耐磨性能、耐疲劳性、耐化学腐蚀性及高抗冲性、优异的柔顺性和极好的阻尼性,并且具有很好的生物相容性。这些优异的性能使它不断受到重视,并且日益广泛的得到应用。但传统的聚氨酯由于耐热性不足等缺点限制了它在更广阔领域的应用。碳纳米管作为21世纪的新型材料,具有奇异的结构和独特的物理性能,被认为是制备高性能聚合物复合材料最理想的候选填料之一。本文利用碳纳米管优越的热学性能来改善聚氨酯的耐热性,制备聚氨酯/碳纳米管复合材料。随着石油危机日趋加剧以及以石油为原料的高分子对环境造成的影响日益严重,以可再生资源为原料制备环境友好的聚合物越来越成为关注的焦点。聚乳酸来源于可再生的玉米和甜菜等,在环境中可降解为二氧化碳和水,具有优良的生物相容性和生物降解能力。因此本论文以端羟基的聚乳酸为软段来制备环境友好的聚氨酯。碳纳米管在聚合物添加材料应用中的关键问题是解决碳纳米管的分散问题,为了得到一致的分散,提高碳纳米管与聚合物基体的相容性,提高填料和基体之间的相互作用力,本文用原位缩聚的方法将聚乳酸共价键接枝在碳纳米管的表面,并制备端羟基的聚乳酸/碳纳米管预聚物,用脂肪族的二异氰酸酯进行扩链来制备环境友好、性能优越的聚氨酯/碳纳米管复合材料。为了对比不同结构的碳纳米管的接枝情况,本文在相同的条件下对不同结构的碳纳米管进行接枝,研究其接枝前后结构和形貌的变化等。具体研究内容如下:1.不同结构碳纳米管的功能化在相同的条件下,用“grafted to”的方法,将分子量为1000的聚丙二醇分子分别接枝在单壁、双壁、直径为10-20nm和20-30nm的碳纳米管的表面,研究不同结构的碳纳米管在接枝前后结构和形貌的变化。结果表明通过“grafted to”方法成功将聚丙二醇分子接枝在单壁、双壁、直径为10-20nm的多壁碳纳米管和直径为20-30nm的多壁碳纳米管的表面。Raman光谱和透射电镜的分析表明单壁和双壁的碳纳米管由于表面结构比较完善,其表面接枝的聚合物分布不均匀,且厚度均不到1nm,而多壁碳纳米管由于表面缺陷比较多,从而能够更加充分的被羧基化,使其表面比较均匀的接枝上了聚合物,其厚度在5nm左右。通过热失重表征和计算可得,单位质量的单壁碳纳米管上接枝的聚合物质量最高,而直径为20-30nm的多壁碳纳米管,其单位质量上接枝的聚合物质量最低;而对于单位面积碳纳米管上接枝的的聚合物摩尔数来说,直径为20-30nm的多壁碳纳米管的最高,而单壁碳纳米管的最低。2.乳酸原位缩聚功能化碳纳米管以羧基化的碳纳米管、乳酸为原料,在催化剂的作用下,通过原位缩聚的方法,一步法将聚乳酸接枝到碳纳米管的表面。通过红外光谱和热失重分析,接枝聚乳酸的分子量随着缩聚反应时间的增加而增加。当缩聚反应时间由5小时增加到23小时后到达平衡,接枝的聚合物的分子量从400增加到2500左右。通过紫外可见光谱分析可知,制备的聚乳酸功能化的碳纳米管之间没有形成团聚,可以在溶剂氯仿中形成均匀的分散。透射电镜的分析结果表明,不同的缩聚反应时间下制备的样品,碳纳米管的管壁和端口都均匀的包覆了聚合物,而且所包覆的聚合物的厚度随着缩聚反应时间的增加而增加。3.端羟基的聚乳酸/碳纳米管复合物制备及研究分别以初始碳纳米管和羧基化的碳纳米管及乳酸、1,4丁二醇为原料,用原位缩聚的方法制备了不同结构和性能的端羟基聚乳酸/碳纳米管复合物。作为平行实验,同时制备了不加碳纳米管的纯端羟基聚乳酸。TGA的分析表明,与纯的聚乳酸相比,碳纳米管的加入显著提高了端羟基聚乳酸的初始分解温度,其中以加入羧基化碳纳米管的聚乳酸初始分解温度最高。DSC的分析表明以Sn(Oct)2和浓硫酸为催化剂可以分别制备无定形的与结晶的聚乳酸/碳纳米管复合物。碳纳米管的加入使结晶变得容易,起了成核剂的作用,但POM的表征结果表明碳纳米管并没有改变聚乳酸的结晶形貌。FESEM和HRTEM的图片分析说明共价键功能化的碳纳米管能均匀的分散在聚乳酸基体中,这对进一步研究聚乳酸/碳纳米管复合物的性能和应用至关重要,也为进一步研究以聚乳酸为嵌段的环境友好的碳纳米管纳米复合材料提供了理论和技术基础。4.聚氨酯/碳纳米管复合材料制备及研究以端羟基聚乳酸功能化的碳纳米管为交联剂,原位交联制备了聚氨酯/碳纳米管复合材料。与纯的聚氨酯和初始碳纳米管与聚氨酯形成的共混复合物相比,因为碳纳米管的加入和在基体中的均匀分散,使其具有更高的热稳定性。基于聚乳酸制备的聚氨酯嵌段共聚物,由于聚乳酸的绿色特性,不仅使制得的聚氨酯环境友好,更好的生物相容等,还有望使聚氨酯应用在更宽广的领域,尤其是生物医药领域等。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 碳纳米管的概述
  • 1.1.1 碳纳米管的结构
  • 1.1.2 碳纳米管的性质
  • 1.1.3 碳纳米管的用途
  • 1.2 碳纳米管的功能化
  • 1.3 碳纳米管与聚合物复合材料研究
  • 1.4 聚氨酯的结构和性能
  • 1.5 本文的目的、意义和主要内容
  • 参考文献
  • 第二章 不同结构碳纳米管的功能化
  • 2.1 引言
  • 2.2 实验部分
  • 2.2.1 原材料
  • 2.2.2 碳纳米管的纯化和羧基化
  • 2.2.3 碳纳米管的聚丙二醇功能化
  • 2.2.4 功能化碳纳米管的纯化
  • 2.2.5 测试分析
  • 2.3 结果与讨论
  • 2.3.1 样品的FTIR 分析
  • 2.3.2 样品的Raman 分析
  • 2.3.3 样品的TGA 分析
  • 2.3.4 碳纳米管的比表面积分析
  • 2.3.5 样品的SEM 分析
  • 2.3.6 样品的TEM 分析
  • 2.4 本章小结
  • 参考文献
  • 第三章 乳酸原位缩聚功能化碳纳米管
  • 3.1 引言
  • 3.2 实验部分
  • 3.2.1 原材料
  • 3.2.2 碳纳米管的纯化和羧基化
  • 3.2.3 聚乳酸功能化碳纳米管
  • 3.2.4 羧基化碳纳米管与聚乳酸的共混
  • 3.2.5 测试分析
  • 3.3 结果与讨论
  • 3.4 本章小结
  • 参考文献
  • 第四章 端羟基的聚乳酸/碳纳米管复合物制备及研究
  • 4.1 引言
  • 4.2 实验部分
  • 4.2.1 原材料
  • 4.2.2 碳纳米管的纯化和羧基化
  • 4.2.3 端羟基的聚乳酸/碳纳米管复合物的制备
  • 4.2.4 测试分析
  • 4.3 结果与讨论
  • 4.3.1 FTIR 表征
  • 4.3.2 NMR 表征
  • 4.3.3 纯的聚乳酸与聚乳酸/碳纳米管复合物的热分析
  • 4.3.4 结晶样品的形貌分析
  • 4.3.5 碳纳米管在聚乳酸基体中的分散
  • 4.4 本章小结
  • 参考文献
  • 第五章 聚氨酯/碳纳米管复合材料制备及研究
  • 5.1 引言
  • 5.2 实验部分
  • 5.2.1 原材料
  • 5.2.2 碳纳米管的纯化和羧基化
  • 5.2.3 聚氨酯/碳纳米管复合材料的制备
  • 5.2.4 测试分析
  • 5.3 结果与讨论
  • 5.3.1 FTIR 表征
  • 5.3.2 NMR 分析聚合物的结构
  • 5.3.3 TGA 表征
  • 5.3.4 DSC 分析
  • 5.3.5 FESEM 分析断面结构
  • 5.4 本章小结
  • 参考文献
  • 第六章 全文总结
  • 致谢
  • 附录:攻读博士学位期间已发表及即将发表的论文
  • 相关论文文献

    • [1].A flexible carbon nanotube transformative device for fused sensing and memory[J]. Science Foundation in China 2020(01)
    • [2].Phosphomolybdic acid-modified highly organized TiO_2 nanotube arrays with rapid photochromic performance[J]. Journal of Materials Science & Technology 2019(09)
    • [3].Performance improvement of continuous carbon nanotube fibers by acid treatment[J]. Chinese Physics B 2017(02)
    • [4].Antioxidant Properties of Substituted Thymols and Their Adsorption on Aluminum Phosphide(AlP) Nanotube(8,0) as Controlled Drug Delivery Device: Theoretical Study in Gas Phase and Ethanol[J]. 结构化学 2017(02)
    • [5].High-performance nitrogen and sulfur co-doped nanotube-like carbon anodes for sodium ion hybrid capacitors[J]. Chinese Chemical Letters 2020(09)
    • [6].Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks[J]. International Journal of Automation and Computing 2020(02)
    • [7].Preparation and properties of zirconia nanotube-supported 12-tungstophosphoric acid catalyst[J]. Chinese Chemical Letters 2018(02)
    • [8].Scaling carbon nanotube complementary transistors to the 5nm gate length and toward the quantum limit[J]. Science Foundation in China 2017(01)
    • [9].Analog and radio-frequency performance analysis of silicon-nanotube MOSFETs[J]. Journal of Semiconductors 2016(06)
    • [10].Italicized carbon nanotube facilitating water transport:a molecular dynamics simulation[J]. Science Bulletin 2015(18)
    • [11].Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction[J]. Journal of Materials Science & Technology 2020(19)
    • [12].Enhanced Heat Transfer of Carbon Nanotube Nanofluid Microchannels Applied on Cooling Gallium Arsenide Cell[J]. Journal of Thermal Science 2020(06)
    • [13].Guided motion of short carbon nanotube driven by non-uniform electric field[J]. Applied Mathematics and Mechanics(English Edition) 2014(05)
    • [14].Electronic structures and optical properties of a SiC nanotube with vacancy defects[J]. Journal of Semiconductors 2013(02)
    • [15].Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings[J]. Transactions of Nonferrous Metals Society of China 2011(S1)
    • [16].A statistical mechanics model of carbon nanotube macro-films[J]. Theoretical & Applied Mechanics Letters 2011(04)
    • [17].Orientations of special water dipoles that accelerate water molecules exiting from carbon nanotube[J]. Applied Mathematics and Mechanics(English Edition) 2011(09)
    • [18].Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field[J]. Chinese Physics B 2011(01)
    • [19].Preparation and photoelectric effect of Zn~(2+)-TiO_2 nanotube arrays[J]. Transactions of Nonferrous Metals Society of China 2010(12)
    • [20].Nanostructure and corrosion behaviors of nanotube formed Ti-Zr alloy[J]. Transactions of Nonferrous Metals Society of China 2009(04)
    • [21].Effects of TiN film coating on electrochemical behaviors of nanotube formed Ti-xHf alloys[J]. Transactions of Nonferrous Metals Society of China 2009(04)
    • [22].Working mechanism of a SiC nanotube NO_2 gas sensor[J]. 半导体学报 2009(11)
    • [23].Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers[J]. Journal of Energy Chemistry 2020(01)
    • [24].Preparation of Au nanoparticles modified TiO_2 nanotube array sensor and its application as chemical oxygen demand sensor[J]. Chinese Chemical Letters 2019(01)
    • [25].Theoretical Investigation of Adsorption Effects of Granisetron Anticancer Drug over BN(7,7-7) Nanotube as a Factor of Drug Delivery: a DFT Study[J]. Chinese Journal of Structural Chemistry 2019(09)
    • [26].Mn_3O_4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO_2 batteries as high-performance energy materials[J]. Rare Metals 2017(05)
    • [27].Influence of tension-twisting deformations and defects on optical and electrical properties of B,N doped carbon nanotube superlattices[J]. Journal of Semiconductors 2016(06)
    • [28].Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO_2 Nanotube Arrays[J]. Journal of Materials Science & Technology 2015(10)
    • [29].Yarn spun from carbon nanotube forests:Production,structure,properties and applications[J]. Particuology 2013(04)
    • [30].Energy barrier for configurational transformation of graphene nanoribbon on nanotube[J]. Theoretical & Applied Mechanics Letters 2014(04)

    标签:;  ;  ;  ;  

    碳纳米管的功能化及聚氨酯复合材料研究
    下载Doc文档

    猜你喜欢