本文主要研究内容
作者边梦龙(2019)在《夏甸金矿气固传热理论与通风降温模拟研究》一文中研究指出:随着矿井开采深度增加,高温热害成为了深井开采普遍面临的难题。风流和岩体之间的气固传热是造成热害主要原因。相关文献表明,在岩温不超过36℃条件下,通风降温应优先采用。本文以具有深井热害典型特征的夏甸金矿为例,采用理论分析、现场实验、数值模拟、相似模型相结合的方法,对矿井气固传热理论与通风降温技术应用进行了研究。通过对夏甸金矿多水平原岩温度测试,获得该矿地温梯度计算公式;经过对矿内各热源的产热分析与计算,发现围岩与压缩空气的放热量占比近71%。为获得矿井调热圈在岩体性质、巷道物理参数和通风参数等多因素复合作用下的导热机理,将经历长时间通风的矿井调热圈以稳态导热模型考虑,依据经典传热学理论,推导出调热圈温度和半径的计算公式。两公式分别经现场实验和数值模拟实验验证,误差在可接受范围内。综合考虑地面气候的季节性差异、井内空气热湿参数变化与围岩散热对立井深部热环境的影响,基于宏观动态热平衡理论,建立了立井风温预测模型。经实验数据验证,立井深部风流温度的计算误差在℃之内。基于模拟巷道通风降温实验风温数据的分析归纳,揭示了掘进巷道风流温度场分布特征。掘进巷道风流温度场可分为迎头阻碍区、射流影响区、回风稳定区、外部影响区,在射流影响区内存在循环涡流区,循环涡流区内存在风流温度最低点。依据《金属非金属矿山安全规程》要求,将28℃设定为通风降温目标值。通过数值模拟实验,发现夏甸金矿在总风量为135.6m3/s时,深部-740m、-780m水平实现降温目的时,井口入风温度宜在21℃及以下;通风设计变更后(总风量347.5m3/s),通风降温适用于-1260m水平及以上,在该水平以下难以仅通过通风实现降温目的。本课题研究成果可对夏甸金矿深部通风降温方案优化提供理论依据和技术指导,相关理论可补充与完善深井通风理论。
Abstract
sui zhao kuang jing kai cai shen du zeng jia ,gao wen re hai cheng wei le shen jing kai cai pu bian mian lin de nan ti 。feng liu he yan ti zhi jian de qi gu chuan re shi zao cheng re hai zhu yao yuan yin 。xiang guan wen suo biao ming ,zai yan wen bu chao guo 36℃tiao jian xia ,tong feng jiang wen ying you xian cai yong 。ben wen yi ju you shen jing re hai dian xing te zheng de xia dian jin kuang wei li ,cai yong li lun fen xi 、xian chang shi yan 、shu zhi mo ni 、xiang shi mo xing xiang jie ge de fang fa ,dui kuang jing qi gu chuan re li lun yu tong feng jiang wen ji shu ying yong jin hang le yan jiu 。tong guo dui xia dian jin kuang duo shui ping yuan yan wen du ce shi ,huo de gai kuang de wen ti du ji suan gong shi ;jing guo dui kuang nei ge re yuan de chan re fen xi yu ji suan ,fa xian wei yan yu ya su kong qi de fang re liang zhan bi jin 71%。wei huo de kuang jing diao re juan zai yan ti xing zhi 、hang dao wu li can shu he tong feng can shu deng duo yin su fu ge zuo yong xia de dao re ji li ,jiang jing li chang shi jian tong feng de kuang jing diao re juan yi wen tai dao re mo xing kao lv ,yi ju jing dian chuan re xue li lun ,tui dao chu diao re juan wen du he ban jing de ji suan gong shi 。liang gong shi fen bie jing xian chang shi yan he shu zhi mo ni shi yan yan zheng ,wu cha zai ke jie shou fan wei nei 。zeng ge kao lv de mian qi hou de ji jie xing cha yi 、jing nei kong qi re shi can shu bian hua yu wei yan san re dui li jing shen bu re huan jing de ying xiang ,ji yu hong guan dong tai re ping heng li lun ,jian li le li jing feng wen yu ce mo xing 。jing shi yan shu ju yan zheng ,li jing shen bu feng liu wen du de ji suan wu cha zai ℃zhi nei 。ji yu mo ni hang dao tong feng jiang wen shi yan feng wen shu ju de fen xi gui na ,jie shi le jue jin hang dao feng liu wen du chang fen bu te zheng 。jue jin hang dao feng liu wen du chang ke fen wei ying tou zu ai ou 、she liu ying xiang ou 、hui feng wen ding ou 、wai bu ying xiang ou ,zai she liu ying xiang ou nei cun zai xun huan guo liu ou ,xun huan guo liu ou nei cun zai feng liu wen du zui di dian 。yi ju 《jin shu fei jin shu kuang shan an quan gui cheng 》yao qiu ,jiang 28℃she ding wei tong feng jiang wen mu biao zhi 。tong guo shu zhi mo ni shi yan ,fa xian xia dian jin kuang zai zong feng liang wei 135.6m3/sshi ,shen bu -740m、-780mshui ping shi xian jiang wen mu de shi ,jing kou ru feng wen du yi zai 21℃ji yi xia ;tong feng she ji bian geng hou (zong feng liang 347.5m3/s),tong feng jiang wen kuo yong yu -1260mshui ping ji yi shang ,zai gai shui ping yi xia nan yi jin tong guo tong feng shi xian jiang wen mu de 。ben ke ti yan jiu cheng guo ke dui xia dian jin kuang shen bu tong feng jiang wen fang an you hua di gong li lun yi ju he ji shu zhi dao ,xiang guan li lun ke bu chong yu wan shan shen jing tong feng li lun 。
论文参考文献
论文详细介绍
论文作者分别是来自北京科技大学的边梦龙,发表于刊物北京科技大学2019-06-27论文,是一篇关于深井论文,地温梯度论文,调热圈论文,风温预测论文,通风降温论文,北京科技大学2019-06-27论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自北京科技大学2019-06-27论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。