论文摘要
随着科学技术的快速发展,人们可以得到越来越多的信息。但是,要从这些大量数据中找到数据之间的模式变得越来越困难。为了找到大数据集合中的模式,人们引入了聚类分析技术。今天,聚类分析已广泛用于数据挖掘、模式识别、图像处理等领域。本文主要研究了聚类分析算法在大类别模式识别中的应用。本文首先详细分析了聚类算法的思想、步骤和理论基础。目前,已经提出了很多的聚类算法,它们基本上可以分为以下几种方法:基于层次的聚类、基于划分的聚类、基于密度的聚类以及基于模型的聚类,这些方法各有优缺点,也出现了很多基于这些方法的改进算法。本文在第三章选取了K-means、LVQ、核聚类三种经典的聚类算法进行了实验,其中,又对比了LVQ算法的改进算法MLVQ,最后选取K-means算法作为研究大类别汉字识别的工具。并结合了模式识别中的特征提取算法和LDA算法提高识别率,在特征提取算法中,我们着重分析了两种特征提取算法:Gabor特征和梯度特征,实验证明梯度特征的识别效率略优于我们常用的Gabor特征,并且经由LDA降维后的特征向量识别率也有很大的提高。由于本文是针对大类别的汉字识别,大类别样本聚类后一般产生的分类码本较大,分类时间长。这些特点阻碍了大类别汉字识别在实际应用中的推广。因此,在第四章,我们提出了运用Split VQ算法和两级聚类算法,分别从时间和空间上进行识别效率的提高,通过大量实验数据表明:这两种算法不仅能够完全保证识别正确率,还能大幅度的压缩码本存储量和降低识别时间。传统的K-means算法要求预先设置聚类数目,在聚类数目不正确的情况下,K-means算法会产生错误的聚类结果。RPCL算法可以自动确定聚类数目,但是这种算法对学习率和遗忘率敏感。本文第五章从评价获胜者和次获胜者间的竞争实力出发,提出了一种改进的RPCL算法。实验证明,新算法可以比RPCL算法更快和方便得找到正确的聚类数目,并且改进算法不需要预先设置遗忘率。
论文目录
相关论文文献
- [1].算法:一种新的权力形态[J]. 治理现代化研究 2020(01)
- [2].算法决策规制——以算法“解释权”为中心[J]. 现代法学 2020(01)
- [3].面向宏观基本图的多模式交通路网分区算法[J]. 工业工程 2020(01)
- [4].算法中的道德物化及问题反思[J]. 大连理工大学学报(社会科学版) 2020(01)
- [5].算法解释请求权及其权利范畴研究[J]. 甘肃政法学院学报 2020(01)
- [6].算法新闻的公共性建构研究——基于行动者网络理论的视角[J]. 人民论坛·学术前沿 2020(01)
- [7].算法的法律性质:言论、商业秘密还是正当程序?[J]. 比较法研究 2020(02)
- [8].关键词批评视野中的算法文化及其阈限性[J]. 学习与实践 2020(02)
- [9].掌控还是被掌控——大数据时代有关算法分发的忧患与反思[J]. 新媒体研究 2020(04)
- [10].美国算法治理政策与实施进路[J]. 环球法律评论 2020(03)
- [11].算法解释权:科技与法律的双重视角[J]. 苏州大学学报(哲学社会科学版) 2020(02)
- [12].大数据算法决策的问责与对策研究[J]. 现代情报 2020(06)
- [13].大数据时代算法歧视的风险防控和法律规制[J]. 河南牧业经济学院学报 2020(02)
- [14].风险防范下算法的监管路径研究[J]. 审计观察 2019(01)
- [15].模糊的算法伦理水平——基于传媒业269名算法工程师的实证研究[J]. 新闻大学 2020(05)
- [16].算法推荐新闻对用户的影响及对策[J]. 新媒体研究 2020(10)
- [17].如何加强对算法的治理[J]. 国家治理 2020(27)
- [18].“后真相”背后的算法权力及其公法规制路径[J]. 行政法学研究 2020(04)
- [19].算法规制的谱系[J]. 中国法学 2020(03)
- [20].论算法排他权:破除算法偏见的路径选择[J]. 政治与法律 2020(08)
- [21].政务算法与公共价值:内涵、意义与问题[J]. 国家治理 2020(32)
- [22].算法的法律规制研究[J]. 上海商业 2020(09)
- [23].蚁群算法在文字识别中的应用研究[J]. 信息与电脑(理论版) 2019(22)
- [24].大数据聚类算法研究[J]. 无线互联科技 2018(04)
- [25].RSA算法的改进研究[J]. 计算机与网络 2018(14)
- [26].智能时代的新内容革命[J]. 国际新闻界 2018(06)
- [27].改进的负载均衡RSA算法[J]. 电脑知识与技术 2018(25)
- [28].基于深度学习的视觉跟踪算法研究综述[J]. 计算机科学 2017(S1)
- [29].大数据算法的歧视本质[J]. 自然辩证法研究 2017(05)
- [30].深度学习算法在智能协作机器人方面的应用[J]. 中国新通信 2017(21)