宽禁带立方氮化硼薄膜的制备与掺杂研究

宽禁带立方氮化硼薄膜的制备与掺杂研究

论文摘要

立方氮化硼(Cubic boron nitride, cBN)是具有优异物理化学性质的超硬材料和宽带隙半导体材料。它的硬度和热导率仅次于金刚石,高温抗氧化能力强,而且对铁族金属有良好的化学惰性,所以cBN是优良的刀具、磨具材料,高温高压方法生产的cBN单晶颗粒已经在机加工行业得到重要应用。立方氮化硼更诱人的应用潜力来自其半导体属性。它具有最宽的禁带宽度(Eg= 6.3±0.2eV),可以实现p型和n型掺杂,以及与金刚石相近的机械性能,这些对于制造高温、大功率、抗辐射和用于恶劣环境工作的电力电子器件及短波长光发射及探测极有意义,立方氮化硼因此格外引人注目。由于高温高压方法只能制备出尺寸微小的cBN晶粒,而在制作刀具涂层以及电学、热学、光学器件等方面,需要用到大面积的cBN,高温高压还难以满足这些需要。随着薄膜科学与技术迅速发展,人们对低成本制备大面积cBN薄膜产生了极大兴趣,纷纷展开相关研究,以充分发挥cBN的优异性能。本文的工作从这一背景出发,包括cBN薄膜制备和掺杂两大部分,获得了外延生长的高质量cBN薄膜,并实现了薄膜的p型和n型掺杂。薄膜制备采用了三种系统进行:射频溅射系统(RF sputtering),射频磁控溅射系统(RF-MS)和微波电子回旋共振化学气相沉积(ECR-CVD)系统。研究了射频溅射系统制备cBN薄膜时,衬底偏压和衬底温度的影响。确定了立方相形成阈值,分别是-150V和300℃。在最优的偏压(-210V)和衬底温度(500℃)下,制备出立方相含量最高为76%的cBN薄膜。另外,采用射频溅射系统研究了两步法沉积cBN薄膜。结果显示,两步法和一步法得到的薄膜中立方相含量相近,但两步法制备的薄膜内应力较小,粘附性较高,可在较长时间内不剥落。对该射频溅射系统进行分析后,认为它用于cBN薄膜制备存在明显不足,如衬底温度有限(≤500℃),极限真空有限(10-4 Pa/10-6 Torr)。射频匹配网络和真空系统不够稳定。这些问题影响了薄膜质量的进一步提高,制备重复性也受到影响。射频磁控溅射系统和ECR-CVD系统制备cBN薄膜表明,由于这两种系统有较好的性能,可以采用更优化的制备条件,在硅衬底上沉积了更高质量的cBN薄膜。其中ECR-CVD结合氟化学机制更是大幅提高了cBN薄膜的质量。氟对非立方相有选择性刻蚀作用,使得立方相的形核和生长可以在更低偏压下进行,因此可以提高立方相含量,并降低薄膜应力,薄膜的结晶度和厚度可大大提高,薄膜可用Raman和XRD进行有效表征,由此能估算出薄膜内的晶粒尺寸。为了进一步提高cBN薄膜质量,采用了与cBN晶格匹配良好且表面能接近的金刚石薄膜做衬底,分别用RF-MS系统和ECR-CVD系统制备得到立方含量近100%的外延cBN薄膜。金刚石薄膜由微波CVD制备。高分辩透射电镜观测表明在金刚石衬底上生长的cBN薄膜具有明显的外延生长特征。立方氮化硼直接生长于金刚石上,中间没有aBN/tBN的孕育层,cBN与金刚石衬底结合牢固,不会剥落。其中ECR-CVD系统又明显优于磁控溅射系统。前者制备的多晶cBN薄膜有更好的结晶度,薄膜厚度可达数微米,对实现cBN薄膜的电学和机械应用有重要意义。通过对高质量cBN薄膜的表征,探讨了溅射法和ECR-CVD制备cBN薄膜的机理。对磁控溅射系统制备的cBN薄膜表面微结构进行分析,说明其中的立方相是在表面以下成核、生长的,符合亚注入模型的生长机制。ECR-CVD制备cBN薄膜是表面生长,原因是在生长过程中有氟化学作用。后者由于可以显著提高薄膜质量,对应用而言更有希望。对cBN薄膜进行了离子注入掺杂,以铍(Be)和硫(S)作为掺杂剂,分别获得了cBN薄膜的p型和n型掺杂。本部分工作在国际上具有一定开创性。对射频溅射系统制备的本征cBN薄膜采用Be离子注入,结合高温热退火处理,使薄膜电阻率下降6个数量级。霍尔效应测试表明薄膜呈p型导电,迁移率为1428 cm2/V·s ,载流子浓度10191020 cm-3。在n型硅片上制备cBN薄膜,用Be离子注入进行p型掺杂,得到了p-BN/n-Si异质结。该异质结有明显的整流特性,整流比约为200。由于薄膜内存在浅能级陷阱,表面I-V测试反映有空间电荷限制电流存在。异质结正向特性拟合方程与Anderson异质结模型和理想二极管正向特性近似,它们的差异说明该异质结的传输机制不是扩散机制。对RF-MS系统制备的纳米cBN薄膜和ECR-CVD系统制备的多晶cBN薄膜进行Be和S离子注入,分别实现了p型和n型掺杂。霍尔效应测试验证了导电类型,并获得了迁移率(Be: 331.2cm2/V?s;S:384cm2/V?s)、载流子浓度(10171018 cm-3)、电阻率等电学特性参数。对掺杂的薄膜进行了变温电阻测量,计算得到注入离子的激活能。铍注入的多晶cBN薄膜的迁移率(3cm2/V?s)及离子的激活能(0.2eV)与Be掺杂的单晶cBN(2cm2/V?s和0.23eV)接近,其激活率(4%)与硼注入的多晶金刚石薄膜(1%)接近。注入纳米cBN薄膜中的Be离子激活能(0.27eV)略大于注入多晶cBN薄膜的Be离子(0.2eV),这与纳米cBN薄膜中有更多的晶界和缺陷有关。激活能测试表明对cBN而言Be是浅能级杂质。研究认为离子注入是实现cBN薄膜掺杂的有效工艺,而且注入剂量和能量显著影响薄膜的电学特性。要获得较好的掺杂效应需要合适的剂量和能量,较大的剂量将显著改变薄膜的电学性能,易于得到明显的掺杂效应,而较低的能量下注入的离子由于离子分布较为均匀而激活率较高。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 宽带隙半导体的兴起
  • 1.2 氮化硼的同素异构体
  • 1.3 立方氮化硼的性质与制备
  • 1.3.1 立方氮化硼的性质与应用前景
  • 1.3.2 立方氮化硼单晶的制备
  • 1.4 立方氮化硼薄膜的制备及存在的问题
  • 1.5 立方氮化硼的电学应用研究
  • 1.6 本文研究内容与意义
  • 第2章 立方氮化硼薄膜的结构和成分表征
  • 2.1 傅立叶红外吸收光谱
  • 2.2 拉曼光谱
  • 2.3 扫描电子显微镜及能谱
  • 2.4 透射电子显微镜
  • 2.5 X 射线衍射
  • 2.6 X 射线光电子能谱
  • 2.7 原子力显微镜
  • 2.8 本章小结
  • 第3章 射频溅射制备本征立方氮化硼薄膜
  • 3.1 射频溅射原理
  • 3.1.1 辉光放电
  • 3.1.2 溅射机理
  • 3.1.3 溅射镀膜
  • 3.1.4 射频溅射镀膜
  • 3.2 制备cBN 薄膜的射频溅射系统
  • 3.3 一步法制备cBN 薄膜的实验过程
  • 3.3.1 一般过程
  • 3.3.2 衬底偏压的影响
  • 3.3.3 衬底温度的影响
  • 3.4 两步法制备立方氮化硼薄膜
  • 3.5 本章小结
  • 第4章 高质量本征立方氮化硼薄膜制备
  • 4.1 射频磁控溅射和 ECR-CVD 系统
  • 4.1.1 射频磁控溅射系统
  • 4.1.2 ECR-CVD 系统
  • 4.2 在硅衬底上沉积cBN 薄膜
  • 4.2.1 射频磁控溅射系统
  • 4.2.2 ECR-CVD 系统
  • 4.3 在金刚石衬底上沉积cBN 薄膜
  • 4.3.1 射频磁控溅射系统
  • 4.3.2 ECR-CVD 系统制备
  • 4.4 本章小结
  • 第5章 铍离子注入的cBN 薄膜电学特性及其异质结研究
  • 5.1 半导体的掺杂
  • 5.2 cBN 薄膜的离子注入掺杂
  • 5.2.1 离子注入掺杂
  • 5.2.2 cBN 薄膜制备
  • 5.2.3 Be 离子注入
  • 5.2.4 霍尔效应测量
  • 5.3 Be 离子注入p-BN/n-Si 异质结研究
  • 5.3.1 半导体异质结
  • 5.3.2 p-BN/n-Si 异质结制备
  • 5.4 本章小结
  • 第6章 高质量立方氮化硼薄膜的离子注入掺杂
  • 6.1 多晶cBN 薄膜的掺杂
  • 6.1.1 多晶cBN 薄膜的p 型掺杂
  • 6.1.2 多晶cBN 薄膜的n 型掺杂
  • 6.2 纳米cBN 薄膜的p 型掺杂
  • 6.3 本章小结
  • 结论
  • 1. 立方氮化硼薄膜的制备研究
  • 2. 立方氮化硼薄膜的掺杂研究
  • 参考文献
  • 攻读博士期间所发表的学术论文
  • 致谢
  • 相关论文文献

    • [1].圆形薄膜预应力测量[J]. 工程塑料应用 2020(03)
    • [2].低光泽度热隐身光子晶体薄膜[J]. 真空科学与技术学报 2019(11)
    • [3].铁酸铋薄膜的电学特性及掺杂影响分析[J]. 化工新型材料 2017(03)
    • [4].有限尺寸硬薄膜/软基底的屈曲分析[J]. 力学季刊 2017(02)
    • [5].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2015(06)
    • [6].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2016(01)
    • [7].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2016(02)
    • [8].国际薄膜大会Thin Films 2016[J]. 真空 2016(03)
    • [9].可怜的小鸭子[J]. 意林(少年版) 2013(11)
    • [10].大棚薄膜破损咋修补[J]. 农业知识 2009(29)
    • [11].基于电化学聚合方法制备荧光薄膜及其在爆炸物检测中的研究[J]. 化学与粘合 2020(01)
    • [12].欧洲开发抗菌薄膜[J]. 绿色包装 2020(07)
    • [13].谈一谈薄膜数字印刷的优势和成本考量[J]. 印刷技术 2019(03)
    • [14].薄膜传输系统导向辊牵引特性研究[J]. 西安理工大学学报 2016(04)
    • [15].铁酸铋薄膜退火工艺研究进展[J]. 表面技术 2017(02)
    • [16].电沉积制备镍-铁薄膜及其性能的研究[J]. 电镀与环保 2017(04)
    • [17].原子层沉积二硫化钼薄膜的机理及生长薄膜的质量[J]. 东南大学学报(自然科学版) 2017(05)
    • [18].2014年全球特种薄膜销售额将达到297.7亿美元[J]. 印刷技术 2010(02)
    • [19].中国进口薄膜级HDPE供应将趋紧[J]. 塑料工业 2010(07)
    • [20].一种Sb_2S_3热电薄膜的制备方法[J]. 电镀与精饰 2009(07)
    • [21].管状弹簧介电薄膜作动器粘弹性变形研究[J]. 甘肃科学学报 2019(06)
    • [22].薄膜基荧光传感检测的研究进展[J]. 中国科学:化学 2020(01)
    • [23].烧结氛围对铜锌锡硫硒薄膜性质的影响[J]. 内蒙古师范大学学报(自然科学汉文版) 2020(03)
    • [24].少层二硫化钼薄膜的制备及其光谱特性[J]. 半导体技术 2020(09)
    • [25].薄膜生产中防止薄膜粘连应用研究[J]. 中国设备工程 2020(18)
    • [26].“长寿薄膜”问世 寿命高达25年[J]. 橡塑技术与装备 2017(04)
    • [27].基于动力学标度法的a-C:H薄膜表面微观形貌的演变机理研究[J]. 原子能科学技术 2017(04)
    • [28].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 化工管理 2014(34)
    • [29].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 分析测试学报 2014(12)
    • [30].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 企业技术开发 2014(34)

    标签:;  ;  ;  ;  ;  

    宽禁带立方氮化硼薄膜的制备与掺杂研究
    下载Doc文档

    猜你喜欢