导读:本文包含了直接式数字频率合成论文开题报告文献综述及选题提纲参考文献,主要关键词:DDS,射频信号,频率合成,AD
直接式数字频率合成论文文献综述
曹永涛[1](2019)在《一种直接数字频率合成技术的设计实现》一文中研究指出本文从直接数字频率合成的原理讲起,介绍了一种DDS专用芯片AD9851的结构、功能、工作原理。通过芯片产生高精度时钟电路的设计实例,对使用AD9851实现可编程高精度时钟的设计方法作了详细描述。文章给出了设计实例的硬件设计电路、外围低通滤波器的设计思路,以及逻辑设计实现程序。1.前言直接数字合成(DDS)是频率合成的一种方法,它直接对参考正弦时钟进行抽样和数字化,通过数字计算技术进行频率合成。与其(本文来源于《电子世界》期刊2019年02期)
陶娟娟,龚澍[2](2018)在《直接数字频率合成技术在信号发生器中的应用研究》一文中研究指出利用直接数字频率合成技术设计信号发生器,输出的信号频率分辨率高、相位信息连续、频率转换的时间短、可靠性高等优点。系统以单片机和DDS芯片为核心,采用高性能的单片机实现整个电路的控制。本文介绍了DDS的典型结构,根据需求选择性价比较高的DDS芯片AD9852。最后给出DDS信号源设计的结构图。本系统通过软件编程和较少的辅助电路实现信号发生器的功能。(本文来源于《科技资讯》期刊2018年31期)
李林东[3](2018)在《直接数字频率合成DDS架构及其应用》一文中研究指出随着数字技术在仪器仪表和通信系统中的广泛使用,产生了参考频率源产生多个频率的数字控制方法,即直接数字频率合成(DDS)。DDS是一种采样数据系统,必须考虑所有与采样相关的问题,包括量化噪声、混迭、滤波等。例如,DAC输出频率的高阶谐波会折回奈奎斯特带宽,因而不可滤波,而基于PLL的合成器的高阶谐波则可以滤波。此外,还有其它几种因素需要考虑。(本文来源于《集成电路应用》期刊2018年01期)
齐英,蔡维[4](2016)在《采用低端FPGA实现直接数字频率合成的优化设计技术研究》一文中研究指出直接数字频率合成是一种新型的技术,由于其具有较多的优点,被广泛应用在一些航空、计算机以及其他高技术含量的行业中。通过分析发现,现阶段由于这一技术较为高端,其他国家为了自身利益以及技术保密目的,并不会向我国进行这一方面的技术交流,这导致直接数字频率合成相关工程的完成不仅仅成本高,其技术要求也较高。这导致我国在这一方面的发展速度并不是十分的快速。因此,我们必须重视这一方面的发展。在此,根据实际情况,对采用低端FPGA实现直接数字频率合成的优化设计技术这一方面进行深入的研究。(本文来源于《科技展望》期刊2016年22期)
张凯威,苗志英,施群雁,陈珊珊,汪红志[5](2016)在《基于直接数字频率合成技术的核磁共振弛豫分析仪场频联锁电路设计》一文中研究指出为了研制一个稳定、高分辨特性的磁共振弛豫分析仪场频联锁系统,利用FPGA作为系统控制核心控制DDS电路,产生快速所需的调制射频信号。然后对锁场系统中发射单元,射频开关以及接收单元进行电路设计。最后,通过实验验证,整个锁场电路在3.268 MHz的频率下,能够激励氘核并产生磁共振信号,并且在接收单元中,能够将u W级的磁共振信号进行前置放大,使其达到330 m W,便于FPGA处理。本系统对将来研制高性能弛豫分析仪有重要的参考意义。(本文来源于《生物医学工程研究》期刊2016年01期)
刘晓东,郝彬,张俊[6](2015)在《基于直接数字频率合成芯片的信号发生器设计》一文中研究指出电子测量对信号源频率准确性、稳定性的要求越来越高。为满足某型产品对信号源高精度的要求,研发一种基于直接数字频率合成(Direct Digital Synthesis,DDS)技术的多功能、高精度信号发生器。频率合成采用精度高、稳定性好的AD9854芯片,逻辑控制采用可编程器件EPM7128STC100,DDS模块的输出信号经AD7111芯片进行调理。试验表明,该系统具有输出频率范围宽、分辨率高、转换速度快、工作稳定等特点,满足某型产品测试要求。(本文来源于《舰船科学技术》期刊2015年12期)
孙月[7](2015)在《基于直接数字频率合成技术的信号发生器设计》一文中研究指出信号发生器,是一种可以提供各种频率、波形和输出电平信号的设备。作为一类重要的电子仪器,它极大地提高了使用者的工作效率,也得到了众多科研工作者的重视,在通信、电子对抗、导航及仪器仪表等领域都有着广泛的需求和发展前景。第叁代频率合成技术------直接数字频率合成技术(Direct Digital Frequency Systhesis,DDS),是一种以全数字化的方式实现频率合成。在频率转换时间、频率分辨率、相位连续性、相对带宽以及集成化等诸多性能参数方面都远远超越了传统频率合成技术的水平。随着高速大规模集成电路和数字信号处理技术的发展,DDS技术优越性越来越明显,得到大规模的应用和推广。本课题研究的信号发生器是基于DDS技术实现的,主要的工作内容如下:对本设计中采用的DDS技术进行了深入的分析,分别从DDS的基本原理、基本结构、以及非理想频谱的产生因素等方面进行阐述,并在此基础上,提出了基于DDS技术的信号发生器的系统架构,并对其各个模块功能进行简要描述。在相位累加模块,累加器的速度直接决定系统的整体性能。为了提高工作效率,在相位累加功能模块,引进了“流水线”结构。针对传统“流水线”的硬件实现面积大,动态功耗大的缺点,提出了改善措施,采用“流水时序”控制的新型流水线结构,进一步降低系统的资源浪费。基于DDS技术,提出了幅移键控、频移键控、相移键控、以及码分多址扩频通信信号源的设计方案。与此同时针对通信信号源设计的过程中,出现的码间干扰现象,完成了升余弦滤波器的电路设计,在滤波器的设计中引入了树形加法器结构,该方案满足性能要求,大大提高了运算速度。对基于DDS技术的信号源电路设计,调用Modelsim完成了功能仿真。采用Xilinx公司的FPGA芯片Virtex-5系列的XC5VLX115T实现,使用ISE完成电路综合,布局布线等。经测试,电路产生信号产生能力完整,滤波器设计达到预期设计指标:中心频率为40MHz,带宽为10MHz,对带外信号的抑制比达到30dB。(本文来源于《西安电子科技大学》期刊2015-11-01)
袁勋,成小园[8](2015)在《直接数字频率合成(DDS)技术研究》一文中研究指出简要介绍了数字频率合成技术的研究现状及发展状况,阐述了直接数字频率合成技术的基本原理,DDS的基本结构,对直接数字频率合成技术进行了分析,得出了DDS的工作特点。(本文来源于《技术与市场》期刊2015年06期)
王炜珽,李淑华,张文旭[9](2015)在《基于FPGA实现直接数字频率合成脉冲线性调频信号》一文中研究指出通过研究直接数字频率合成(DDS)技术的原理和电路结构,分析基于DDS技术合成脉冲线性调频信号(DDSLFM)的可行性,给出两种DDS相位地址信号产生电路的原理结构。在此基础上分析DDS-LFM系统参数的设置问题,利用FPGA设计实现DDS-LFM系统的硬件电路。最后利用Matlab仿真软件对该系统输出的波形数据进行频谱分析,给出了归一化的幅频特性曲线和时频特性曲线。(本文来源于《现代电子技术》期刊2015年10期)
黄强,代向明,范涛,袁国顺[10](2014)在《抖动处理对直接数字频率合成(DDFS)波形频谱的改善》一文中研究指出实际的DDFS系统中,由于波表(WFT)宽度和深度的限制,会带来幅度上的舍入误差和相位上的截断误差。舍入误差在频谱中的接近白噪声,而相位截断误差在频谱上表现为一个个独立的谱线。针对相位截断误差的特点,采用相位数据加入抖动的方法可以对合成波形质量加以改善。仿真表明,采用适当的抖动处理后,合成波形的无杂散动态范围(SFDR)得到10~20 d B的改善;在一定的WFT深度下,随着加入抖动信号幅度的变化,合成波形的SFDR有一个最大值。意味着在一个基本DDFS系统中,可以用很小的硬件开销就可以得到10~20 d B的波形质量改善。(本文来源于《科学技术与工程》期刊2014年31期)
直接式数字频率合成论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
利用直接数字频率合成技术设计信号发生器,输出的信号频率分辨率高、相位信息连续、频率转换的时间短、可靠性高等优点。系统以单片机和DDS芯片为核心,采用高性能的单片机实现整个电路的控制。本文介绍了DDS的典型结构,根据需求选择性价比较高的DDS芯片AD9852。最后给出DDS信号源设计的结构图。本系统通过软件编程和较少的辅助电路实现信号发生器的功能。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
直接式数字频率合成论文参考文献
[1].曹永涛.一种直接数字频率合成技术的设计实现[J].电子世界.2019
[2].陶娟娟,龚澍.直接数字频率合成技术在信号发生器中的应用研究[J].科技资讯.2018
[3].李林东.直接数字频率合成DDS架构及其应用[J].集成电路应用.2018
[4].齐英,蔡维.采用低端FPGA实现直接数字频率合成的优化设计技术研究[J].科技展望.2016
[5].张凯威,苗志英,施群雁,陈珊珊,汪红志.基于直接数字频率合成技术的核磁共振弛豫分析仪场频联锁电路设计[J].生物医学工程研究.2016
[6].刘晓东,郝彬,张俊.基于直接数字频率合成芯片的信号发生器设计[J].舰船科学技术.2015
[7].孙月.基于直接数字频率合成技术的信号发生器设计[D].西安电子科技大学.2015
[8].袁勋,成小园.直接数字频率合成(DDS)技术研究[J].技术与市场.2015
[9].王炜珽,李淑华,张文旭.基于FPGA实现直接数字频率合成脉冲线性调频信号[J].现代电子技术.2015
[10].黄强,代向明,范涛,袁国顺.抖动处理对直接数字频率合成(DDFS)波形频谱的改善[J].科学技术与工程.2014