约束分岔分析在若干非线性振动问题中的应用

约束分岔分析在若干非线性振动问题中的应用

论文摘要

自上个世纪中期,非线性理论已成为各个领域研究中非常重要的组成部分,非线性动力学也成为动力和控制领域的主要研究内容。同时非线性理论受到工程界越来越多的关注,如何利用理论来指导设计逐渐成为一个新的发展方向。约束分岔奇异性理论,能将工程实际问题中存在的各种约束的影响考虑在内,揭示出系统中包含的各种分岔行为模式,有可能成为工程非线性振动问题的重要工具。本文工作包括如下三部分:形状记忆合金(SMA)是一类有广阔应用前景的智能材料系统。本文对其包括形状记忆特性和超弹性的力学特性进行了简要说明。又用Maple软件对其进行转迁集分析和分岔图的绘制。最后对结果和问题进行讨论,说明了利用形状记忆合金材料进行减振在大激励振幅和滞回环完全激发的情况下非常有效。研究了激励频率在共振频率附近轴端加摆系统的减振问题。使用多尺度法解得定常解方程,利用奇异性理论进行数值计算和方程的分析,画转迁集图和分岔图。讨论不同参数对转迁集分布的影响,得到随参数选取不同,系统有可能穿越转迁集区间的结论。对32 m2双质体非线性共振筛的实验数据进行分析。对设备测量的关键点比较和分析。着重分析两筛箱在不同工作频率下的运动情况。这些分析结果为分析和改进设备提供了保证和依据。

论文目录

  • 中文摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 非线性理论的研究背景
  • 1.2 非线性理论研究的应用及意义
  • 1.2.1 非线性理论的工程应用
  • 1.2.2 形状记忆合金的特性及应用
  • 1.3 非线性理论的理论研究
  • 1.4 非线性理论的研究方法
  • 1.5 奇异性理论方法简介
  • 1.5.1 奇异性理论
  • 1.5.2 约束分岔简介
  • 1.6 论文工作安排
  • 第二章 自激非线性和旗帜形滞后非线性系统分岔奇异性分析
  • 2.1 伪弹性恢复力模型建立
  • 2.2 用平均法解自激方程
  • 2.3 应用奇异性理论分析
  • 2.3.1 绘制转迁集
  • 2.3.2 应用奇异性理论分析结果
  • 2.4 本章小结
  • 第三章 外激励下轴端加摆系统的分析
  • 3.1 系统模型建立及分析
  • 3.2 多尺度法解非线性方程
  • 3.3 奇异性分析
  • 3.3.1 选用一组开折参数进行的奇异性分析
  • 3.3.1.1 转迁集及分岔图分类
  • 3.3.1.2 参数变化对转迁集区域划分的影响
  • 3.3.2 选用另一组开折参数进行的奇异性分析
  • 3.4 本章小结
  • 第四章 大型非线性共振筛的动态实验测试分析
  • 4.1 非线性共振筛的工程背景
  • 4.2 非线性共振筛的振动性能实验分析
  • 4.2.1 振动性能实验介绍
  • 4.2.2 不同测点振动状况分析
  • 4.2.3 相关测点振动一致性分析
  • 4.3 非线性共振筛的振动频率成分实验分析
  • 4.4 本章小结
  • 第五章 全文总结
  • 参考文献
  • 发表论文和科研情况说明
  • 致谢
  • 相关论文文献

    • [1].梁的非线性振动的进展[J]. 大众科技 2009(10)
    • [2].基于盲源分离的钢筋混凝土梁非线性振动特性分析[J]. 工程力学 2012(12)
    • [3].索-梁组合结构耦合非线性振动的数值研究方法[J]. 黑龙江交通科技 2011(08)
    • [4].温度变化对正交索网结构非线性振动的影响[J]. 空间结构 2009(02)
    • [5].研究强非线性振动问题的最简规范形方法[J]. 应用力学学报 2008(04)
    • [6].大挠度矩形板的强非线性振动分析[J]. 太原理工大学学报 2008(S2)
    • [7].阻尼对叶片非线性振动的影响[J]. 噪声与振动控制 2013(05)
    • [8].结构非线性振动智能控制试验与分析[J]. 力学学报 2010(01)
    • [9].基于非线性振动特性的预应力混凝土梁损伤识别[J]. 工程力学 2014(02)
    • [10].高功率超声脉冲激励下金属板的非线性振动现象研究[J]. 物理学报 2010(06)
    • [11].主体结构位移激励下碳纤维索桁架非线性振动[J]. 机械强度 2011(03)
    • [12].发泡聚丙烯的非线性振动传递特性[J]. 中国塑料 2008(01)
    • [13].斜拉索非线性振动信号粒子滤波分析与应用[J]. 振动与冲击 2013(05)
    • [14].一种提高薄板非线性振动响应分析精度的方法[J]. 弹箭与制导学报 2011(06)
    • [15].复规范形理论在研究三自由度强非线性振动问题中的应用[J]. 振动与冲击 2010(08)
    • [16].非线性振动定量分析方法简述[J]. 科技信息(科学教研) 2008(13)
    • [17].“第十二届全国非线性振动第九届全国非线性动力学和运动稳定性学术会议”征文[J]. 科技导报 2008(20)
    • [18].基于非线性振动模型的空气悬架特性研究[J]. 制造业自动化 2014(06)
    • [19].第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性会议介绍[J]. 力学进展 2009(06)
    • [20].球轴承非线性振动解析[J]. 振动与冲击 2009(12)
    • [21].受梁端激励斜拉索的非线性振动响应[J]. 西南大学学报(自然科学版) 2009(09)
    • [22].转子-轴承系统故障非线性振动响应识别方法的研究[J]. 机床与液压 2008(04)
    • [23].截割滚筒的非线性振动参数研究[J]. 机械研究与应用 2013(01)
    • [24].单列向心球轴承引发的非线性振动分析[J]. 重庆大学学报 2013(01)
    • [25].时滞反馈及轴力作用下弹性梁的非线性振动[J]. 湖南大学学报(自然科学版) 2013(09)
    • [26].钻柱横向非线性振动分析[J]. 中国工程机械学报 2010(02)
    • [27].组合悬臂板的非线性振动响应[J]. 东北大学学报(自然科学版) 2008(03)
    • [28].含表面裂纹简支梁的非线性振动分析[J]. 动力学与控制学报 2010(02)
    • [29].含表面裂纹悬臂梁的非线性振动分析[J]. 铁道科学与工程学报 2010(01)
    • [30].非线性实验的哲学意义[J]. 大学物理实验 2010(06)

    标签:;  ;  ;  ;  ;  

    约束分岔分析在若干非线性振动问题中的应用
    下载Doc文档

    猜你喜欢