论文摘要
现代铜闪速熔炼炉发展中若干理论与操控优化问题的研究,对闪速熔炼技术的突破、提高铜回收率、提升国内铜冶炼企业盈利水平以及国际市场竞争力具有重要的现实意义。通过对闪速炉反应塔内工艺物料颗粒较全面的分析检测和总结前人研究成果,通过从微粒运动学、动力学、两相流体力学以及统计分析和归纳等方面的论证,提出了新的闪速熔炼模型——粒子脉动碰撞模型(PPC Model)。在闪速炉悬浮熔炼过程中粒子既存在分裂行为,又存在碰撞和聚合过程,精矿粒子的分裂和碰撞聚合是一对矛盾的统一体。粒子分裂是精矿快速氧化反应的结果,也加速了粒子脉动,而精矿粒子脉动正是粒子碰撞聚合主要原因;粒子聚合使氧化脱硫反应继续,是固液相之间氧传递的重要机制。粒子脉动碰撞模型具体表述如下:(1)在闪速炉反应塔不同高度上,精矿粒子的分裂和颗粒群内粒子脉动碰撞过程同时存在;(2)通过系统地论证分析高强湍流喷射流中粒子群的脉动与碰撞机制,提出精矿粒子脉动是粒子碰撞聚合主要原因;(3)随着氧化反应的进行,在颗粒中心形成熔融硫化物和SO2气泡,颗粒外表面是多孔的氧化铁壳;熔融核中气相的生成促使粒子分裂和脉动,氧气浓度和当地温度越高,这一过程越强烈;(4)反应塔中由于粒子的大小、粒子的成分、粒子的周围的氧气浓度和粒子温度的不同,导致各粒子之间的氧化程度差别极大。氧化反应放出的热量使精矿粒子熔化;欠氧化粒子未完成脱硫反应;(5)过氧化粒子在反应塔中下降时,它们彼此之间、或者与反应慢的欠氧化粒子相碰撞,聚合长大,同时过氧化颗粒被欠氧化粒子还原。通过反应动力学和反应热力学分析确定,悬浮熔炼过程主要反应有:铜精矿着火燃烧反应、过氧化反应、碰撞还原反应、二次氧化反应、造渣反应和燃料燃烧反应,并以此建立了闪速熔炼仿真的数学模型。通过直接验证、逻辑验证和间接验证三种方式论证了本仿真模型的合理性和可靠性。本研究对炉渣中的铜损失形态进行了检验分析,并进行了沉淀池工业考察和炉内熔体的垂直取样,分析了炉结形成的主要原因。通过对金隆闪速炉生产数据的统计分析,研究炉渣带走铜所占百分率(或渣含铜)与铜精矿处理量、铜锍品位、炉渣成分(铁硅比)、渣层厚度和渣中Fe3O4含量等参数之间的关系,并提出降低弃渣含铜损失要重点控制闪速熔炼中Fe3O4行为的观点和技术路线。针对如何强化闪速熔炼的同时减少Fe3O4生成量,提出了在反应塔——沉淀池——贫化电炉系统中建立明显的氧势梯度,实行“氧势梯度熔炼”制度。通过在反应塔顶加入适量固体还原剂——焦粉(或煤粒),可以形成必要的氧势梯度,从而可实现在熔炼强化的同时,降低Fe3O4的生成量。通过闪速炼铜数字仿真试验得到了减少Fe3O4生成量优化工况。最后,对超强化闪速熔炼精矿喷嘴新结构进行了仿真研究与开发。它是一种旋流喷嘴,通过采用不同的旋流数可以改变火焰的形状和反应过程。超强化闪速熔炼可将现有的闪速炉的最大生产能力提高3~4倍。一系列仿真试验证明,若铜精矿采用气力输送的方式送入炉内,并且通过主要操作参数的优化匹配可成功实现超强化喷嘴的设计理念和目的。
论文目录
相关论文文献
- [1].浅谈铜冶炼闪速熔炼技术[J]. 中国金属通报 2019(02)
- [2].浊水冷却塔在闪速熔炼铜锍水淬系统中的应用[J]. 有色设备 2016(03)
- [3].祥光铜业:以匠人精神守护蓝天碧水[J]. 中华环境 2017(03)
- [4].铜闪速熔炼电收高砷烟尘硫酸化焙烧脱砷试验研究[J]. 湿法冶金 2017(04)
- [5].铜闪速熔炼过程操作参数预测模型及应用[J]. 有色金属(冶炼部分) 2015(05)
- [6].铜闪速熔炼优化算法预测模型的建立与研究[J]. 中国新技术新产品 2013(22)
- [7].铜闪速熔炼过程操作模式的多类分类策略研究[J]. 科技创新与应用 2014(21)
- [8].铅闪速熔炼过程的多相平衡模型[J]. 中南大学学报(自然科学版) 2012(02)
- [9].我国镍闪速熔炼技术的发展[J]. 中国有色冶金 2012(04)
- [10].第12届国际闪速熔炼大会在上海召开[J]. 特种铸造及有色合金 2008(12)
- [11].铜闪速熔炼精矿喷嘴性能的数值仿真分析[J]. 有色金属(冶炼部分) 2019(12)
- [12].铜闪速熔炼操作模式的智能优化方法[J]. 世界有色金属 2018(21)
- [13].贵冶闪速熔炼冶金数模控制系统的应用[J]. 有色金属(冶炼部分) 2011(02)
- [14].奥托昆普粗铜闪速熔炼工艺[J]. 中国有色冶金 2010(03)
- [15].镍闪速熔炼气流干燥系统二氧化硫尾气治理实践[J]. 有色金属(冶炼部分) 2015(09)
- [16].硫化铅矿闪速熔炼过程的热力学分析[J]. 中国有色金属学报 2011(11)
- [17].铜闪速熔炼配料过程建模与智能优化方法研究[J]. 系统仿真学报 2008(08)
- [18].简述闪速熔炼炉渣浮选铜研究与实践进展[J]. 世界有色金属 2019(07)
- [19].铅富氧闪速熔炼的整体运行效果及评价[J]. 有色金属(冶炼部分) 2012(04)
- [20].镍闪速熔炼落地粉尘改造实践[J]. 铜业工程 2011(02)
- [21].铜闪速熔炼过程操作模式的智能优化[J]. 控制与决策 2008(03)
- [22].铅富氧闪速熔炼技术基础研究[J]. 有色金属(冶炼部分) 2012(04)
- [23].奥图泰铜和镍闪速熔炼全球用户大会在上海召开[J]. 中国矿业 2008(11)
- [24].基于混沌遗传算法的铜闪速熔炼过程操作模式智能优化系统[J]. 信息与控制 2008(01)
- [25].闪速熔炼与富氧侧吹熔炼工艺对比研究[J]. 世界有色金属 2018(09)
- [26].铜闪速熔炼烟灰酸浸渣制备磁性材料[J]. 有色金属科学与工程 2015(03)
- [27].铅富氧闪速熔炼工艺中的蒸汽综合利用[J]. 有色金属(冶炼部分) 2012(04)
- [28].基于投影寻踪回归的铜闪速熔炼过程关键工艺指标预测[J]. 中国有色金属学报 2012(11)
- [29].基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J]. 自动化学报 2009(06)
- [30].颗粒取样分析铜闪速熔炼炉内反应过程[J]. 有色金属工程 2015(03)