本文主要研究内容
作者(2019)在《Removing Moisture Effect on Soil Reflectance Properties: A Case Study of Clay Content Prediction》一文中研究指出:Visible, near-infrared and shortwave-infrared(VNIR-SWIR) spectroscopy is an efficient approach for predicting soil properties because it reduces the time and cost of analyses. However, its advantages are hampered by the presence of soil moisture, which masks the major spectral absorptions of the soil and distorts the overall spectral shape. Hence, developing a procedure that skips the drying process for soil properties assessment directly from wet soil samples could save invaluable time. The goal of this study was twofold:proposing two approaches, partial least squares(PLS) and nearest neighbor spectral correction(NNSC), for dry spectral prediction and utilizing those spectra to demonstrate the ability to predict soil clay content. For these purposes, we measured 830 samples taken from eight common soil types in Israel that were sampled at 66 different locations. The dry spectrum accuracy was measured using the spectral angle mapper(SAM) and the average sum of deviations squared(ASDS), which resulted in low prediction errors of less than 8% and 14%, respectively. Later, our hypothesis was tested using the predicted dry soil spectra to predict the clay content, which resulted in R~2 of 0.69 and 0.58 in the PLS and NNSC methods, respectively. Finally, our results were compared to those obtained by external parameter orthogonalization(EPO) and direct standardization(DS). This study demonstrates the ability to evaluate the dry spectral fingerprint of a wet soil sample, which can be utilized in various pedological aspects such as soil monitoring, soil classification,and soil properties assessment.
Abstract
Visible, near-infrared and shortwave-infrared(VNIR-SWIR) spectroscopy is an efficient approach for predicting soil properties because it reduces the time and cost of analyses. However, its advantages are hampered by the presence of soil moisture, which masks the major spectral absorptions of the soil and distorts the overall spectral shape. Hence, developing a procedure that skips the drying process for soil properties assessment directly from wet soil samples could save invaluable time. The goal of this study was twofold:proposing two approaches, partial least squares(PLS) and nearest neighbor spectral correction(NNSC), for dry spectral prediction and utilizing those spectra to demonstrate the ability to predict soil clay content. For these purposes, we measured 830 samples taken from eight common soil types in Israel that were sampled at 66 different locations. The dry spectrum accuracy was measured using the spectral angle mapper(SAM) and the average sum of deviations squared(ASDS), which resulted in low prediction errors of less than 8% and 14%, respectively. Later, our hypothesis was tested using the predicted dry soil spectra to predict the clay content, which resulted in R~2 of 0.69 and 0.58 in the PLS and NNSC methods, respectively. Finally, our results were compared to those obtained by external parameter orthogonalization(EPO) and direct standardization(DS). This study demonstrates the ability to evaluate the dry spectral fingerprint of a wet soil sample, which can be utilized in various pedological aspects such as soil monitoring, soil classification,and soil properties assessment.
论文参考文献
论文详细介绍
论文作者分别是来自Pedosphere的,发表于刊物Pedosphere2019年04期论文,是一篇关于,Pedosphere2019年04期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Pedosphere2019年04期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。