泳动型机器人论文-翟文贺

泳动型机器人论文-翟文贺

导读:本文包含了泳动型机器人论文开题报告文献综述及选题提纲参考文献,主要关键词:多重推进,鞭毛泳动磁微机器人,动力学模型,磁驱动系统

泳动型机器人论文文献综述

翟文贺[1](2017)在《多重推进式鞭毛泳动磁微机器人系统研究》一文中研究指出微机器人在生物医学工程和微纳制造如靶向药物传递、显微外科手术和微纳操作等领域发挥着越来越重要的作用,具有巨大的发展潜力。鞭毛微机器人相对于螺旋结构的微机器人,具有结构简单和柔顺性好的优点。但目前现有的鞭毛磁微机器人驱动方式单一,通常只能通过单种推进方式驱动,因而环境适应性差。由于生物医学和微纳制造等领域中微机器人的工作环境复杂多变,因此研究具有较强环境适应性的多重推进式微机器人具有重要意义。本文提出一种多重推进式鞭毛泳动磁微机器人,能够分别在磁梯度场、旋转磁场和摆动磁场下驱动前进。分别建立磁微机器人在液体环境中叁种磁推进方式下的动力学模型,并在建立适用多重推进式线圈磁驱动系统的基础上,提出微机器人的控制策略,开展多重推进式鞭毛泳动磁微机器人的实验研究。首先,提出一种多重推进式鞭毛泳动磁微机器人的结构。根据液体环境中流体阻力理论,结合磁场特性,分别建立鞭毛泳动磁微机器人在磁梯度场、旋转磁场和摆动磁场下的动力学模型。在此基础上,分析鞭毛外形尺寸、弹性模量、鞭毛倾斜角度等参数对微机器人的运动速度以及能量转化效率的影响规律。并通过仿真获取鞭毛在不同磁场驱动下的变形规律。其次,依据多重推进式鞭毛泳动磁微机器人的特征,构建适于此类磁微机器人的驱动模块。基于亥姆霍兹线圈驱动系统,增加有效的转换模块,使传统的亥姆霍兹线圈亦能产生梯度磁场,以满足磁微机器人多重推进需求。分析比较各种磁场的产生方式,并利用多物理场仿真COMSOL软件,仿真获得磁场的分布特性。依据仿真结果,编制对应的控制程序,用以分别产生磁梯度场、旋转磁场和摆动磁场,并通过实验测试磁场的真实情况。最后,开展多重推进式鞭毛泳动磁微机器人的实验研究。基于之前建立的驱动系统,制作多种参数的多重推进式磁微机器人,并开展不同尺寸参数下的微机器人在各种磁场驱动下的实验研究。通过实验获得的关于微机器人的相关性能结果,并将其与理论计算结果相比较。实验结果表明,多重推进式鞭毛泳动磁微机器人在旋转磁场或摆动磁场的驱动下,更适用于在粘性较高的甘油等液体中运动,而在磁梯度场的驱动下,更适用于在粘性比较低的液体中运动。在粘性多变的复杂液体环境中,本文提出的多重推进式鞭毛泳动磁微机器人适应能力更强。(本文来源于《哈尔滨工业大学》期刊2017-06-01)

徐慧超[2](2016)在《螺旋推进泳动磁微机器人系统设计与实验研究》一文中研究指出随着微纳米技术的进步和人们对微创医疗、微制造系统等方面日益增长的需求,微机器人技术得到了快速发展。螺旋结构磁微机器人在微尺度范围内相对于梯度场驱动磁微机器人和摆动前进磁微机器人具有驱动力大和易于控制的特点,是微尺度机器人的一种重要结构形式。当前国内外研究者对于螺旋磁微机器人的研究主要集中在毫米甚至厘米尺度中,而对于亚毫米尺寸范围内的螺旋磁微机器人的研究较少。不同的尺度范围内,各参数变化对其运动性能的影响规律存在差异,因此在亚毫米尺度下对微机器人的研究具有重要研究意义。本文以螺旋推进泳动磁微机器人为研究对象,建立微机器人在液体中泳动的动力学模型,设计亥姆霍兹线圈驱动微机器人运动,并在此基础上提出运动控制策略。构建螺旋推进泳动磁微机器人系统,进行实验分析和验证。首先,建立螺旋推进泳动磁微机器人的动力学模型。在低雷诺数环境的前提下,基于阻力理论得出了螺旋磁微机器人泳动的动力学模型。在该模型的基础上研究螺旋半径、长度、螺距等参数对机器人运动速度和效率的影响规律,得出微机器人性能最佳时的参数取值。分析磁场能够产生的最大力矩,引入失步频率,得到螺旋磁微机器人所能达到的最大速度与结构参数之间的关系曲线。进一步提出两端分布的双螺旋磁微机器人结构,并对其进行分析。其次,设计螺旋推进泳动磁微机器人磁驱动模块。分析亥姆霍兹线圈的工作原理,并利用COMSOL软件进行仿真,得出线圈的磁场分布特性。基于仿真结果,设计满足实验要求的叁对亥姆霍兹线圈。利用线圈磁场在空间中的旋转控制微机器人沿任意方向运动。对设计的亥姆霍兹线圈所产生的磁场进行实验检测。最后,进行螺旋推进泳动磁微机器人的实验研究。在磁驱动模块的基础上构建螺旋磁微机器人实验系统,并加工制作多种尺寸的单螺旋磁微机器人。在不同外界环境和不同微机器人几何参数条件下进行机器人运动性能实验。利用实验得到各参数对运动性能的影响规律,并对理论分析结果进行验证。通过实验比较双螺旋和单螺旋磁微机器人的运动性能,并验证双螺旋磁微机器人的螺旋可迭加性。进行螺旋磁微机器人运动控制实验,验证微机器人运动的可重复性。(本文来源于《哈尔滨工业大学》期刊2016-06-01)

李健,王振龙,郭艳玲[3](2014)在《形状记忆合金在仿生水下泳动机器人中的应用》一文中研究指出形状记忆合金具备功重比高、应变大、动作无声等特点,近些年来作为致动器在水下机器人领域有着广泛的应用。结合水下泳动型生物的分类和游动特点,介绍了国内外利用形状记忆合金研制的各种仿生水下机器人,并对其结构设计、驱动控制和推进性能进行分析;最后总结了当前形状记忆合金驱动的仿生水下机器人的不足,提出了今后研究需解决的问题。(本文来源于《微特电机》期刊2014年12期)

任思璟,董金波,王安华,徐益民,崔崇信[4](2012)在《无缆泳动式煤矿管道检测机器人控制系统的研究》一文中研究指出针对煤矿生产中使用的大量管道存在内部老化而又难以检测的问题,提出了一种基于外磁场驱动的泳动式无缆机器人检测方案,该机器人控制系统以AVR单片机ATmegal6为核心处理器,可改变机器人的运动方向及速度,实现管道内裂缝的检测。在对控制系统硬件设计的基础上,给出系统软件流程图。该系统具有结构简单,适应性强,在井下管道检测方面具有广阔的应用前景。(本文来源于《煤矿机械》期刊2012年06期)

任思璟,董金波,王安华,徐益民,崔崇信[5](2011)在《无缆微型仿鱼泳动机器人的设计与运动分析》一文中研究指出根据鱼类的游动推进原理,提出一种基于螺线管线圈结构的外磁场驱动微型仿鱼机器人的设计方案,构建了其实验控制系统,分析了机器人在液体中的推进力和动力学模型,以及尾鳍对其推进性能的影响。实验结果表明,不同的尾鳍摆动频率和尾鳍长度对推进速度有很大影响,其运动速度随驱动频率的增大而逐步增大,但当驱动频率大于7 Hz时运动速度减慢。实验结果与理论分析相一致。(本文来源于《黑龙江科技学院学报》期刊2011年06期)

任思璟[6](2008)在《微型泳动式管道机器人的研究与设计》一文中研究指出工业设备中大量的细小管道经过长时间的使用后,会出现各种各样的缺陷,给生产和生活带来安全隐患。由于对细小管道的检修与维护比较困难,所以对管道进行检测和维修的管道机器人的需求日益增加。目前的管道机器人受到能源供给的限制,不能长时间远距离进行工作,因此本文基于鱼类的泳动规律,研究了一种新型无缆管道机器人,通过外部交变磁场驱动机器人体内的永磁体,实现通过尾鳍在交变磁场驱动下产生的受迫振动,来模仿鱼类尾部摆动产生推进力,实现微型机器人的泳动。同时详细分析了该微型机器人的泳动推进原理,阐述了微型泳动机器人波动前进时的运动学模型和动力学模型。本文介绍了机器人控制系统的总体设计方案,包括电磁铁驱动模块、通信模块、电源模块等。搭建了一个基于AVR单片机控制系统,包括硬件电路的设计,软件的编制等。并且我们结合主控电路与实际现场的要求从硬件与软件两个方面设计了电机位置检测电路。通过光电码盘与单片机的计数器功能相结合实现了整个系统的闭环控制,得到了较好的控制效果。最后进行了微型机器人泳动实验的研究,分析了机器人的运动速度和磁场频率的关系。实验结果表明,该机器人具有较好的泳动性能,实现了基于外磁场无缆驱动。(本文来源于《哈尔滨工程大学》期刊2008-02-01)

王科俊,任思璟[7](2008)在《泳动式微型管道机器人的设计及运动分析》一文中研究指出以NdFeB磁铁为驱动器设计了仿生游动微型机器人。其作业原理是通过改变时变振荡磁场的驱动频率,控制嵌入机器人头部NdFeB的运动,时变振荡磁场能转换成机器人头部摆动的机械能带动铜薄膜尾翼产生波动,进而与液体耦合产生推力控制机器人运动。最后分析了尾翼的频率方程和振型函数新的解析表达式。(本文来源于《黑龙江科技学院学报》期刊2008年01期)

胡飞,顾大强,陈柏[8](2006)在《微型泳动机器人研究》一文中研究指出介绍了国内外微型泳动机器人的研究进展,对微型泳动机器人的工作机理和存在的问题进行了分析,论述了医用领域微型泳动机器人的研究难点和关键技术,并对微型泳动机器人的发展趋势及应用前景进行了探讨。(本文来源于《机床与液压》期刊2006年12期)

刘巍[9](2006)在《超磁致伸缩薄膜的磁机耦合特性及其在泳动机器人中的应用》一文中研究指出作为一种新型的功能材料,超磁致伸缩薄膜具有强磁致伸缩效应、高机电耦合系数、较高的响应速度、非接触式驱动及良好的结构性能等优点而倍受关注,在微传感器和微驱动器等领域显示出良好的应用前景。超磁致伸缩薄膜的静动态磁机耦合特性及模型是采用超磁致伸缩薄膜设计开发微器件的重要基础。但由于薄膜的磁机耦合关系具有强的非线性和滞回性,使得薄膜的特性建模十分困难。目前所建立的静态磁机耦合模型存在参数过多、计算复杂等问题,而动态磁机耦合模型的研究尚未见报道。以上这些问题严重阻碍了超磁致伸缩薄膜及其器件的发展。本论文以这种新型的功能材料为基础,以该类材料的静动态磁机耦合特性及模型为研究对象,同时应用超磁致伸缩薄膜拟研制一种能在液体微管道内泳动的微型机器人,为超磁致伸缩薄膜的静动态磁机耦合特性及其微传感器和微执行器的研究提供一个新的途径和思路。本论文从薄膜磁致伸缩现象的产生机理出发,分析论述了超磁致伸缩薄膜的磁致伸缩特性。同时,较为系统地分析研究了材料成分、薄膜内应力和热处理等因素对超磁致伸缩薄膜低磁场下磁致伸缩性能的影响规律。在此基础上,采用射频磁控溅射法,研制出了铽镝铁-聚酰亚胺-钐铁和铽镝铁-铜-钐铁两种双层超磁致伸缩薄膜,该薄膜具有较好的表面质量和较小的滞回性。采用赫姆霍茨线圈作为超磁致伸缩薄膜的驱动线圈,并结合激光微位移传感器作为位移量的检测单元,构成一个超磁致伸缩薄膜静动态磁机耦合特性的实验系统。对驱动线圈产生的磁场进行了有限元分析和实验研究,结果表明:驱动线圈产生磁场强度的大小和均匀度都满足了薄膜的驱动要求。针对超磁致伸缩薄膜的磁机耦合特性“力非线性”的特点,从唯象的角度和工程应用的角度分析了超磁致伸缩薄膜低磁场下的巨磁特性、软磁特性和预应力状态下的滞回特性。提出了一个低磁场下超磁致伸缩薄膜非线性耦合模型。该模型包括改进的瑞利模型和“蝴蝶曲线”模型。采用研制出的双层超磁致伸缩薄膜实验数据验证了所提出的模型。结果显示:模型可较好的预测超磁致伸缩薄膜低磁场磁极化回线和磁致伸缩回线,特别是描述应变回线的“蝴蝶曲线”模型,可较精确地预测超磁致伸缩薄膜低磁场下磁致伸缩回线。利用前人研制出的超磁致伸缩薄膜的实验结果同样验证了模型的正确性。针对超磁致伸缩薄膜的几何非线性变形特性,对研制出的聚酰亚胺基片和铜基片超磁致伸缩薄膜悬臂梁进行实验研究,发现其端部偏移量分别达到其厚度的2倍和0.5倍。同时,结合非线性弹性理论,建立了双层超磁致伸缩薄膜的几何非线性变形模型。采用所研制出的双层超磁致伸缩薄膜悬臂梁变形的试验结果验证了模型的合理性。低磁场下超磁致伸缩薄膜非线性耦合模型和几何非线性变形模型为有效地研制准静态超磁致伸缩薄膜微器件提供了重要的理论依据。在交变的磁场中,超磁致伸缩薄膜会展现出更强的非线性特性。根据哈密顿原理,采用分离变量法和摄动法建立了超磁致伸缩薄膜非线性振动模型。将超磁致伸缩薄膜超谐波共振的实验结果与所提出的模型进行了分析比较,结果表明:非线性振动模型可较好地解释双层超磁致伸缩薄膜的主共振和超谐波共振现象。同时,对双层超磁致伸缩薄膜的驱动特性进行系统的研究,发现两种双层超磁致伸缩薄膜具有十阶超谐波共振的特性,给出并分析了直流偏置磁场和交流磁场对超磁致伸缩薄膜共振频率、振动幅值的影响规律。超磁致伸缩薄膜的非线性振动模型和动态特性的实验研究结论可提高动态超磁致伸缩薄膜微器件的设计效率和控制精度。最后,探索性地将超磁致伸缩薄膜应用于微型泳动机器人的设计研究,设计研制出了一个能在液体微管道内游动的微型机器人。当超磁致伸缩薄膜的驱动频率为5阶超谐波共振频率时,微机器人实现了向前游动。根据流体动力学原理,建立了微型泳动机器人的动力学模型。针对液体粘度、机器人本体的质量和刚度、超磁致伸缩薄膜尾鳍的质量和刚度对泳动性能的影响进行了试验研究。采用聚酰亚胺基双层超磁致伸缩薄膜制作的微型机器人在汽油中的最大泳动速度可达2.86mm/s。(本文来源于《大连理工大学》期刊2006-11-01)

钟映春[10](2006)在《泳动微机器人的动力学模型研究》一文中研究指出研究对象是以压电元件为驱动器、模仿鱼类游泳方式驱动的微机器人。根据流体力学有关理论,分析了在液体中运动时微机器人驱动翼产生的推进力和微机器人受到的阻力,并对此进行了阻力的有关的实验,在此基础上建立了泳动微机器人的动力学模型,并进行了压电元件驱动频率与微机器人运动速度的仿真,以及液体环境对微机器人运动速度影响的仿真。这些为深入研究泳动微机器人的泳动能力奠定了基础。(本文来源于《机械设计与研究》期刊2006年03期)

泳动型机器人论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

随着微纳米技术的进步和人们对微创医疗、微制造系统等方面日益增长的需求,微机器人技术得到了快速发展。螺旋结构磁微机器人在微尺度范围内相对于梯度场驱动磁微机器人和摆动前进磁微机器人具有驱动力大和易于控制的特点,是微尺度机器人的一种重要结构形式。当前国内外研究者对于螺旋磁微机器人的研究主要集中在毫米甚至厘米尺度中,而对于亚毫米尺寸范围内的螺旋磁微机器人的研究较少。不同的尺度范围内,各参数变化对其运动性能的影响规律存在差异,因此在亚毫米尺度下对微机器人的研究具有重要研究意义。本文以螺旋推进泳动磁微机器人为研究对象,建立微机器人在液体中泳动的动力学模型,设计亥姆霍兹线圈驱动微机器人运动,并在此基础上提出运动控制策略。构建螺旋推进泳动磁微机器人系统,进行实验分析和验证。首先,建立螺旋推进泳动磁微机器人的动力学模型。在低雷诺数环境的前提下,基于阻力理论得出了螺旋磁微机器人泳动的动力学模型。在该模型的基础上研究螺旋半径、长度、螺距等参数对机器人运动速度和效率的影响规律,得出微机器人性能最佳时的参数取值。分析磁场能够产生的最大力矩,引入失步频率,得到螺旋磁微机器人所能达到的最大速度与结构参数之间的关系曲线。进一步提出两端分布的双螺旋磁微机器人结构,并对其进行分析。其次,设计螺旋推进泳动磁微机器人磁驱动模块。分析亥姆霍兹线圈的工作原理,并利用COMSOL软件进行仿真,得出线圈的磁场分布特性。基于仿真结果,设计满足实验要求的叁对亥姆霍兹线圈。利用线圈磁场在空间中的旋转控制微机器人沿任意方向运动。对设计的亥姆霍兹线圈所产生的磁场进行实验检测。最后,进行螺旋推进泳动磁微机器人的实验研究。在磁驱动模块的基础上构建螺旋磁微机器人实验系统,并加工制作多种尺寸的单螺旋磁微机器人。在不同外界环境和不同微机器人几何参数条件下进行机器人运动性能实验。利用实验得到各参数对运动性能的影响规律,并对理论分析结果进行验证。通过实验比较双螺旋和单螺旋磁微机器人的运动性能,并验证双螺旋磁微机器人的螺旋可迭加性。进行螺旋磁微机器人运动控制实验,验证微机器人运动的可重复性。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

泳动型机器人论文参考文献

[1].翟文贺.多重推进式鞭毛泳动磁微机器人系统研究[D].哈尔滨工业大学.2017

[2].徐慧超.螺旋推进泳动磁微机器人系统设计与实验研究[D].哈尔滨工业大学.2016

[3].李健,王振龙,郭艳玲.形状记忆合金在仿生水下泳动机器人中的应用[J].微特电机.2014

[4].任思璟,董金波,王安华,徐益民,崔崇信.无缆泳动式煤矿管道检测机器人控制系统的研究[J].煤矿机械.2012

[5].任思璟,董金波,王安华,徐益民,崔崇信.无缆微型仿鱼泳动机器人的设计与运动分析[J].黑龙江科技学院学报.2011

[6].任思璟.微型泳动式管道机器人的研究与设计[D].哈尔滨工程大学.2008

[7].王科俊,任思璟.泳动式微型管道机器人的设计及运动分析[J].黑龙江科技学院学报.2008

[8].胡飞,顾大强,陈柏.微型泳动机器人研究[J].机床与液压.2006

[9].刘巍.超磁致伸缩薄膜的磁机耦合特性及其在泳动机器人中的应用[D].大连理工大学.2006

[10].钟映春.泳动微机器人的动力学模型研究[J].机械设计与研究.2006

标签:;  ;  ;  ;  

泳动型机器人论文-翟文贺
下载Doc文档

猜你喜欢