几类风险模型的破产理论及分红问题的研究

几类风险模型的破产理论及分红问题的研究

论文摘要

本文分别从绝对破产,Gerber-Shiu期望折扣罚金函数(简称Gerber-Shiu函数)和最优分红三个方面来研究了保险中的若干问题。我们研究的风险模型大致分为两类,一类是具有利率的风险模型,另一类是L(?)vy风险模型。一、具有利率的风险模型:对于绝对破产问题的研究我们一般是借助于对Gerber-Shiu函数的研究来展开的。而对于Gerber-Shiu函数的研究,则是通过随机过程及随机微分方程的知识得到它满足的积分-微分方程及边值问题,然后得到了它在指数索赔下的明确表达式以及Erlang(2)索赔下满足的微分方程,并通过数值分析得到贷款利息及存款利息对它的影响。对于最优分红问题的研究是通过研究折现分红总量均值的矩母函数/高阶矩,最优分红策略以及最优分红界几个方面展开的。通过概率的手段推导出折现分红总量均值的矩母函数,高阶矩满足的积分-微分方程及边值条件,或者通过粘性解理论来刻化最优值函数。进一步我们通过数据分析得到存款利息及贷款利息对折现分红总量均值函数及最优分红界的影响。二,L(?)vy风险模型:我们通过研究L(?)vy风险盈余过程的L(?)vy测度对应的密度函数π的log-凸性来判定对应的q尺度函数W(q)在区间(α*,∞)的log-凸性,α*是所有使得W(q)′取得局部极小值里面的最大值.从而得到了判断界策略是最优的一个充分条件。根据内容本文可分为以下七章:第一章、介绍了几类风险模型、最优分红以及合流超几何方程的基础知识。第二章、研究了绝对破产下经典风险模型的分红问题及Gerber-Shiu函数。保险者以b为分红界向保单持有者分发红利.首先,我们得到的折扣分红总量的矩母函数以及高阶矩满足的积分-微分方程,并证明了二者在零点的连续性。然后运用这些结果得到了指数索赔下二者的精确表达式。进一步,讨论了指数索赔下的最优分红界问题。最后对指数及Erlang(2)索赔下的最优分红问题给出了数据分析。本章的部分结果发表在Applied Stochastic Models in Business andIndustry上,部分已投到Acta Mathematicae Applicatae Siniea上。第三章、考虑了具有贷款及存款利息的风险模型的分红问题。首先,我们求得折扣分红总量的矩母函数以及高阶矩满足的积分-微分方程,并证明了二者在零点的连续性。然后运用这些结果我们得到了指数索赔下二者的精确表达式,并讨论了贷款利息及存款利息对最优分红界的影响。最后研究了绝对破产时的Laplace变换。本章内容投到Statistics&Probability Letters。第四章、考虑了具有贷款及存款利息的扰动复合Poisson风险模型的绝对破产问题。首先,通过研究随机Dirichlet问题得到了Gerber-Shiu函数满足的积分-微分方程及边值条件。进一步得到一些特殊情形下的积分方程及瑕疵更新方程,并通过瑕疵方程得到了轻尾及重尾索赔下Gerber-Shiu函数的渐近结果。最后研究了指数索赔下的明确表示及数值结果。本章结果发表在Methodology andComputing in Applied Probability上。第五章、本章中,我们研究了绝对破产下具有常数分红界的扰动复合Poisson风险模型。得到了折扣分红总量矩母函数及Gerber-Shiu函数满足的积分-微分方程及边值条件,并求得了一些特殊情形下的具体表示。本章内容已被ActaMathematica Scientia接收。第六章、本章考虑了具有投资利息的扰动复合Poisson风险模型的最优分红问题。我们致力于找到使得折现分红总量均值最大的最优分红策略。通过HJB方程的粘性解理论来刻画最优值函数,并证明了一些特殊情形下界策略在所有可允许的分红策略中是最优的。本章的研究内容已投到Journal of Computationaland Applied Mathematics上。第七章、本章研究了一类谱负的L(?)vy风险过程。首先,我们回顾了一些本章需要的log-凸和完全单调函数的基本理论。接着讨论了凸解和两类积分-微分方程,最后讨论了某些特殊情形下界策略的最优性。本章研究结果已投到Journalof Computational and Applied Mathematics上。

论文目录

  • 中文摘要
  • ABSTRACT
  • Chapter 1 Preliminaries
  • §1.1 Some basic risk models
  • §1.2 About optimal dividend problems
  • §1.3 Confluent hypergeometric equation
  • Chapter 2 Dividend payments in the classical risk model under absolute ruin
  • §2.1 Introduction
  • u,b'>§2.2 Moment generating function of Du,b
  • u,b'>§2.3 Moments of Du,b
  • §2.4 Explicit expressions for exponential claims
  • §2.5 Optimal dividend barrier for exponential claims
  • §2.6 Numerical analysis for Erlang(2) claim sizes
  • §2.7 The Gerber-Shiu expected discounted penalty function
  • Chapter 3 Optimal dividends in the classical risk model with credit and debit interests under absolute ruin
  • §3.1 Introduction
  • u,b'>§3.2 Moment generating function of Du,b
  • u,b'>§3.3 Moments of Du,b
  • u, y; b and Vn(u, b)'>§3.4 Explicit expressions of Mu, y; b and Vn(u, b)
  • §3.5 Optimal choice of dividend barrier for exponential claims
  • §3.6 The Laplace transform of absolute ruin time
  • Chapter 4 The perturbed compound Poisson risk process with in vestment and debit interest
  • §4.1 Introduction
  • §4.2 The stochastic Dirichlet problem
  • §4.3 Integro-differential equations
  • §4.4 Integral equations
  • +'>§4.5 A renewal equation and asymptotic results for Φ+
  • +'>§4.6 Explicit results for exponential claims Φ+
  • Chapter 5 On the perturbed compound Poisson risk model under absolute ruin with debit interest and a constant dividend barrier
  • §5.1 Introduction
  • 1(u, b)'>§5.2 Integro-differential equations for V1(u, b)
  • u,b'>§5.3 Moment generating function and higher moments of Du,b
  • §5.4 The Gerber-Shiu expected discounted penalty function
  • Chapter 6 Optimal dividend strategy in the perturbed compound Poisson risk model with investment interest
  • §6.1 Introduction
  • §6.2 Hamilton-Jacobi-Bellman equation
  • §6.3 Construction of the optimal strategy
  • §6.4 Examples
  • Chapter 7 Optimality of the barrier strategy for spectrally negative Levy risk processes
  • §7.1 Introduction
  • §7.2 Preliminaries on log-convex functions and related functions
  • §7.3 Convex solutions for integro-differential equations
  • §7.4 The optimality of the barrier strategy
  • References
  • Acknowledgements
  • 相关论文文献

    • [1].Kaia Gerber:未来才刚开始[J]. 现代青年 2017(10)
    • [2].Gerber Technology to Demonstrate Multiple YuniquePLM Enhancements[J]. China Textile 2013(02)
    • [3].Gerber Technology to Demonstrate Automation Solutions for Fashion and Technical Textiles at Texprocess and Techtextil 2013[J]. China Textile 2013(05)
    • [4].Gerber Technology Showcases Latest Automation Solutions for the Apparel Industry at China's Dongguan Fair 2012[J]. China Textile 2012(04)
    • [5].Gerber Technology's James Arthurs to Retire at Year End[J]. China Textile 2011(04)
    • [6].Interview of James S.Arthurs,EX-President of Gerber Technology[J]. China Textile 2011(12)
    • [7].Gerber Technology to Showcase Innovation at SPESA EXPO 2010[J]. China Textile 2010(06)
    • [8].Gerber Releases webFolio,webView for FLM[J]. China Textile 2008(12)
    • [9].Gerber Celebrates AccuMark's 20th Anniversary[J]. China Textile 2008(09)
    • [10].On the Gerber-Shiu Discounted Penalty Function for a Surplus Process Described by PDMPs[J]. Acta Mathematica Sinica(English Series) 2010(05)
    • [11].Gerber Technology Announces Acquisition of Yunique Solutions[J]. China Textile 2009(12)
    • [12].Gerber Technology Celebrates 40th Year in Apparel Industry[J]. China Textile 2008(03)
    • [13].相位索赔间隔在两种保费率下关于绝对破产的Gerber-Shiu函数[J]. 华中师范大学学报(自然科学版) 2018(01)
    • [14].Asymptotic Estimates of Gerber-Shiu Functions in the Renewal Risk Model with Exponential Claims[J]. Acta Mathematicae Applicatae Sinica(English Series) 2012(01)
    • [15].Gerber Scientific Appoints Thomas Finn as President of Asia Pacific[J]. China Textile 2011(02)
    • [16].The Gerber-Shiu Expected Discounted Penalty Function for Lévy Insurance Risk Processes[J]. Acta Mathematicae Applicatae Sinica(English Series) 2010(04)
    • [17].谈正则表达式在InSight PCB系统中的应用[J]. 印制电路信息 2020(06)
    • [18].Miu Miu最新太阳镜广告大片曝光[J]. 中国眼镜科技杂志 2016(14)
    • [19].Semir Adopts Gerber Technology's YuniquePLM to Support its Immense Domestic Growth[J]. China Textile 2014(11)
    • [20].Online Fashion Retailer Bonobos Selects Gerber Technology's YuniquePLM~(TM) Industry-Tailored Software to Support Rapid Growth and Fast-Paced Product Innovation[J]. China Textile 2010(05)
    • [21].Gerber Technology Presented Modern-Day Approach at Texprocess Americas Show[J]. China Textile 2012(06)
    • [22].One of Brazil's Largest Clothing Manufacturers Relies on Gerber Equipment to Support Aggresive Growth Strategy[J]. China Textile 2011(06)
    • [23].Gerber Technology Upgrades webPDM~(TM)[J]. China Textile 2010(03)
    • [24].Gerber Technology Unveils New YuniquePLM~(TM) Brand Identity Expressing Commitment to Stimulate the Apparel, Footwear and Soft Goods PLM Landscape[J]. China Textile 2010(02)
    • [25].腐蚀条件下基于Gerber模型的DFR推导及实测[J]. 航空材料学报 2019(02)
    • [26].GERBER与Lectra的服装CAD制板系统的对比分析[J]. 轻纺工业与技术 2012(03)
    • [27].Newsroom[J]. China Textile 2012(02)
    • [28].带干扰的两类理赔更新风险模型的Gerber-Shiu函数[J]. 吉林大学学报(理学版) 2012(05)
    • [29].一类带扰动风险模型的Gerber-Shiu函数(英文)[J]. 应用概率统计 2010(06)
    • [30].时刻变换风险模型中的Gerber-Shiu函数[J]. 应用数学学报 2015(03)

    标签:;  ;  ;  ;  ;  ;  ;  ;  

    几类风险模型的破产理论及分红问题的研究
    下载Doc文档

    猜你喜欢