一种5自由度并联机构运动性能分析及完全各向同性结构设计

一种5自由度并联机构运动性能分析及完全各向同性结构设计

论文摘要

并联机构相对于传统的串联机构而言其刚度大,结构紧凑,动作迅速,无积累误差,因而在工业应用上有着突出的优越性。关于并联机构的研究从上世纪40年代开始,如今越来越受到人们的重视,其中对3、6自由度并联机构的研究尤为突出,而4、5自由度并联机构由于其结构相对复杂,运动学分析困难,对其进行的研究较少。而5自由度并联机构尤其为本文涉及的3移动2转动5自由度并联机构在空间位姿固定方面具有重要作用,由于缺乏相关方面的研究,导致在工业应用方面的极大不便。并联机构的运动性能分析直接关系到机构在实际应用中的控制策略研究,具有一定的实际意义。并联机构的运动性能分析通常包括位置正解分析、速度方程建立及雅可比矩阵求解、加速度方程建立以及动力学方程建立。为了进一步研究机构的工作性能,机构的工作空间和奇异性也是重要的研究内容。并联机构的工作空间指机构可达的所有位置点的集合,实际即是机构的工作区域。奇异性是指机构在工作空间的特殊位形下,出现机构动平台自由度数增加或减小的现象。奇异性对机构的工作状态影响很大,处于奇异状态下的机构其驱动力无法平衡广义力。具有完全各向同性的并联机构可避免上述不良现象的影响,完全各向同性是指机构在运动上具有完全解耦性,每一个自由度方向上的运动只受一条支链主动副的控制,且不存在奇异性,因此其运动学及动力学分析将得到极大的改善,控制算法也将变得更为简单。基于此,本文主要以5SPS+IUPU并联机构为例进行了的研究,其中S代表球铰、P代表移动副、U代表虎克铰,5SPS代表5条主动支链,1UPU代表一条被动支链。论文首先运用矢量方法和螺旋理论对并联机构进行了运动学进行了分析。矢量法研究机构的位置正解具有直观、简单的效果,可以很容易的根据机构输入计算得到所有输出可能解;利用螺旋理论分析机构的雅可比矩阵,可通过雅可比矩阵建立机构的速度方程。雅可比矩阵既是建立速度方程方法又能反映机构的速度映射关系,通过分析矩阵包含的螺旋系线性关系,能够得到的机构的奇异位形。利用微分法对速度方程进行求解,就能得到机构的加速度方程。其次,利用运动学分析结构研究了机构的奇异性及工作空间问题。利用解析法对雅克比矩阵包含的螺旋系进行了相关性研究,得出机构所有奇异位形的可能形式;利用计算法和解析法分析了机构的工作空间,根据边界曲线的绘制建立了空间模型。最后,为了进一步改善机构的性能,利用螺旋理论对3移2转型并联机构进行了无奇异完全各向同性结构综合,提出一系列5自由度并联机构的结构组合形式。

论文目录

  • 致谢
  • 摘要
  • Abstract
  • 目录
  • 插图目录
  • 插表目录
  • 第1章 绪论
  • 1.1 课题的背景及研究意义
  • 1.1.1 并联机构的研究背景
  • 1.1.2 并联机构的研究意义
  • 1.2 并联机构的研究现状
  • 1.2.1 并联机构的研究与发展
  • 1.2.2 并联机构的国内外研究现状
  • 1.2.3 并联机构的国内外研究热点
  • 1.3 本文研究内容及研究方法
  • 1.4 本章小结
  • 第2章 基于螺旋理论的机构分析方法
  • 2.1 螺旋理论
  • 2.2 互易螺旋
  • 2.3 机构运动关节的螺旋表示
  • 2.4 空间螺旋系
  • 2.4.1 螺旋系基本概念
  • 2.4.2 螺旋系相关性
  • 2.5 本章小结
  • 第3章 5自由度并联机构的运动性能分析
  • 3.1 运动学分析
  • 3.1.1 机构描述及自由度计算
  • 3.1.2 运动学解
  • 3.1.3 速度方程与雅可比矩阵
  • 3.1.4 加速度分析
  • 3.2 静力学分析
  • 3.3 动力学分析
  • 3.3.1 构件相互运动的坐标表示
  • 3.3.2 动平台动力学方程
  • 3.3.3 支链动力学方程
  • 3.3.4 整体动力学方程
  • 3.4 本章小结
  • 第4章 5自由度并联机构的奇异性及工作空间分析
  • 4.1 奇异性分析
  • 4.1.1 奇异性的数学条件及几何描述
  • 4.1.2 机构的奇异位形
  • 4.2 工作空间描述方法
  • 4.3 实例解析
  • 4.3.1 位置反解
  • 4.3.2 速度、加速度、静力解
  • 4.3.3 动力学解
  • 4.3.4 工作空间及奇异点分布
  • 4.4 本章小结
  • 第5章 3移2转型并联机构完全各向同性设计
  • 5.1 正逆雅可比矩阵数学模型
  • 5.1.1 速度方程
  • 5.1.2 速度方程模型
  • 5.2 各移动支链结构综合
  • 5.3 各旋转支链结构综合
  • 5.4 完全各向同性机构构型综合
  • 5.5 3PPPU-2RPPPU并联机构运动学分析
  • 5.6 本章小结
  • 第6章 总结与展望
  • 6.1 主要结论
  • 6.2 后期研究展望
  • 参考文献
  • 附录 作者简介及在学期间的学术论文和参加的科研项目
  • 相关论文文献

    • [1].加工技术要求与应限自由度之间的关系[J]. 机械工程师 2020(01)
    • [2].四自由度机械手模型建立与软件仿真探究[J]. 内燃机与配件 2020(04)
    • [3].用于抓取倾倒垃圾桶的多自由度机械臂[J]. 机械制造 2020(05)
    • [4].平面体系自由度计算的简化方法[J]. 科技风 2020(22)
    • [5].在教学中给学生更多的自由度[J]. 长春教育学院学报 2014(19)
    • [6].经济统计中自由度概念的产生背景及应用分析[J]. 山西青年 2015(24)
    • [7].液压式四自由度机械手设计研究[J]. 科学技术创新 2020(24)
    • [8].基于信息熵的动力模型缩聚中主自由度优化选择研究[J]. 佳木斯大学学报(自然科学版) 2018(04)
    • [9].二自由度牵引装置在轨道运行中的应用[J]. 中国设备工程 2017(10)
    • [10].一种新型伪四自由度并联机器人的设计与分析[J]. 机械设计与制造 2015(11)
    • [11].中国投资自由度何时升温[J]. 法人 2013(12)
    • [12].课堂之外的较量[J]. 初中生学习(初一) 2009(10)
    • [13].全球国家经济自由度排名 2014年[J]. 综合运输 2014(10)
    • [14].多自由度超声电机的研究现状与展望[J]. 物理 2009(01)
    • [15].有关“工程变自由度机构”的几个问题[J]. 装备制造技术 2009(06)
    • [16].机构消极自由度的判别与引入方法[J]. 上海交通大学学报 2008(04)
    • [17].非洲国家经济自由度排名[J]. 西亚非洲 2008(06)
    • [18].五自由度机械手运动学分析与仿真研究[J]. 黑龙江科学 2020(16)
    • [19].五自由度机械手结构及电气控制设计[J]. 成都大学学报(自然科学版) 2020(03)
    • [20].数理统计中自由度的定义和计算[J]. 科学咨询(科技·管理) 2018(06)
    • [21].多自由度球形超声波电动机姿态测控技术综述[J]. 微特电机 2017(06)
    • [22].以对过约束的认识看自由度分析的历史发展[J]. 机械工程学报 2017(15)
    • [23].一种冗余自由度机械臂逆运动学解析算法[J]. 机械科学与技术 2016(05)
    • [24].浅析创译过程中译者的自由度[J]. 安徽文学(下半月) 2015(09)
    • [25].怎样看待孩子的自由度[J]. 基础教育论坛 2013(02)
    • [26].伸缩杆式二自由度并联机构及应用[J]. 新技术新工艺 2013(12)
    • [27].怎样看待孩子的自由度[J]. 河南教育(基教版) 2012(12)
    • [28].多自由度检测机械装置的研制[J]. 自动化与仪器仪表 2014(06)
    • [29].少自由度并联机构研究进展[J]. 燕山大学学报 2011(05)
    • [30].平面变自由度机构的形成方法与实现形式[J]. 河北科技大学学报 2010(03)

    标签:;  ;  ;  ;  ;  ;  ;  

    一种5自由度并联机构运动性能分析及完全各向同性结构设计
    下载Doc文档

    猜你喜欢