论文摘要
土壤中高浓度的盐分对大多数的高等植物,特别是农作物产生毒害效应,引起植物生长受抑、甚至死亡,对农牧业生产构成严重的威胁。由低亲和性吸收系统介导的毒性Na+的吸收是造成植物盐害的诱因,减少有害Na+进入植物体内是解决这一问题的关键。但目前国内外对在植物Na+吸收途径研究方面以拟南芥、水稻和小麦等盐敏感的甜土植物和盐芥等盐生植物为材料,它们均是叶中Na+积累量较低的拒盐植物,吸Na+能力十分有限,并不是研究Na+吸收途径的理想材料,因此,对高等植物低亲和性Na+吸收途径尚不明确。本研究以积盐型盐生植物海滨碱蓬(Suaeda maritima)为材料,利用22Na+同位素示踪技术,对海滨碱蓬Na+吸收与积累机制进行了系统分析,取得的主要结果如下:1.通过对Ca2+(非选择性阳离子通道与低亲和性阳离子转运蛋白抑制剂)、Li+(Na+吸收的竞争性抑制剂)以及TEA+、Cs+和Ba2+(K+通道抑制剂)等几种离子通道抑制剂影响海滨碱蓬22Na+内流的分析,发现无论是在轻度(25 mM NaCl)还是在重度(150 mM NaCl)盐生境下,Ca2+和Li+都没有影响Na+的吸收,表明目前被学术界广泛接受的非选择性阳离子通道(NSCCs)和低亲和性阳离子转运蛋白(LCT1)并非Na+进入海滨碱蓬根细胞的主要途径。鉴定出了两条低亲和性Na+吸收途径:途径1对Ba2+很敏感,对TEA+和Cs+不敏感,介导轻微盐生境(25 mM NaCl)下Na+的吸收,可能由HKT类转运蛋白完成;途径2对Ba2+、TEA+和Cs+都很敏感,介导重度盐生境(150 mM NaCl)下Na+的吸收,可能由AKT1类通道蛋白完成。2.在初步确定上述两条途径的外界NaCl浓度的拐点在75-100 mM NaCl的基础上,将其进一步细化在90-95 mM NaCl。我们进一步研究发现,K+影响Na+吸收的拐点也与TEA+影响Na+吸收的拐点一致。3.比较了TEA+和Ba2+对海滨碱蓬、小麦和水稻三种植物22Na+内流的影响,结果表明,在低盐生境下HKT类型的转运蛋白对小麦和水稻根Na+的吸收要远少于海滨碱蓬,且对小麦和水稻根的拒Na+有一定的贡献;在高盐生境下,HKT类型的转运蛋白在小麦和水稻中更多地行使了拒Na+的功能。4.分析了NH4+(5 mM)对TEA+和Ba2+抑制海滨碱蓬22Na+内流、Na+累积和Na+净吸收速率的影响,结果表明在加入Ba2+(5 mM)的条件下,同时加入NH4+来降低由H+-ATP酶建立的跨膜质子梯度显著地降低了海滨碱蓬根的拒Na+作用。据此,我们推测在海滨碱蓬根种存在至少两种HKT类转运蛋白:一种在低盐生境下行使Na+吸收的功能;另一种在低盐和高盐胁迫下行使拒Na+作用。另外,在高盐生境下ABC转运蛋白也可能是高等植物Na+外排泵蛋白的一个候选者。5.研究了阳离子-Cl-共转运蛋白(cation-Cl-cotransporter,CCC)抑制剂丁苯氧酸(bumetanide)对海滨碱蓬Na+累积和净吸收速率的影响,结果表明CCC转运蛋白在轻度盐生境下介导少量Na+的吸收,在高盐生境下介导大量Na+的吸收;另外,CCC转运蛋白也可能在调节高Na+和高K+环境下水分的传导中发挥作用。6.在高盐(100-200 mM NaCl)生境下,低浓度的K+(5 and 10 mM)促进了海滨碱蓬Na+的吸收,其可能的机制是激活了AKT1类型的K+通道。7.不同浓度NaCl(25、150和200 mM)处理192(8d)、240(10d)和360(10d)h时,海滨碱蓬根中Na+浓度均到达最高值(140、205和310 mM),分别是外界生境中Na+浓度的5.6、1.4和1.5倍,而后随着处理时间的延长根中的Na+浓度逐渐下降;处理480 h(20 d)时,海滨碱蓬植株地上部Na+浓度均到达最高值(376、616和715mM),分别是外界生境中Na+浓度的15、4.1和3.6倍;植株地上部Na+浓度在三种生境盐处理的6-12 h之间迅速增加,而后增加缓慢。根22Na+内流随时间进程的变化模式与根和植株地上部Na+浓度变化模式基本一致。以上结果同时也进一步表明,当盐处理达到一定阶段,植株中Na+的积累上升到一定水平且到达稳态平衡以后,即使在海滨碱蓬这样大量吸收Na+的盐生植物中也会产生拒Na+作用。8.不同浓度NaCl(25、150和200 mM)处N20 d后,植株地上部中K+浓度整体上分别显著下降了37%、64%和54%,根中的K+浓度变化起伏较大,整体上呈下降趋势;植株地上部中Na+/K+比分别增加至对照的47、156和147倍;根中的Na+/K+比分别显著增加为对照的41、38和47倍。
论文目录
AcknowledgementsList of abbreviation used摘要AbstractCHAPTER 1:INTRODUCTION+ UPTAKE AND Na+ TRANSPORT IN HIGHER PLANTS'>CHAPTER 2:PROGRESS ON Na+ UPTAKE AND Na+ TRANSPORT IN HIGHER PLANTS2.1 Background2.2 Negative effects of salinity on plant productivity2.2.1 Osmotic stress2.2.2 Ionic stress2.2.3 Secondary stresses+ uptake into roots'>2.3 Na+ uptake into roots+ uptake in higher plants'>2.3.1 Physiological and electrophysiological mechanisms of Na+ uptake in higher plants+,Na+ competition and selectivity'>2.3.1.1 K+,Na+ competition and selectivity+-Ca2+interactions under salt environments'>2.3.1.2 Na+-Ca2+interactions under salt environments+ uptake'>2.3.1.3 Effects of driving force or electrochemical potential across the plasma on Na+uptake+ uptake'>2.3.1.4 Effects of external salt concentration on Na+uptake+ uptake'>2.3.1.5 Experimental methods in studying the physiological mechanisms of Na+uptake+ uptake in higher plants'>2.3.2 Molecular biological mechanism of Na+ uptake in higher plants2.3.2.1 NSCCs/VICs2.3.2.2 LCT12.3.2.3 KUP/HAK/KT2.3.2.4 HKT2.3.2.5 AKT12.3.2.6 CCC+ Transport in higher plants'>2.4 Na+ Transport in higher plants+ xylem loading'>2.4.1 Control of Na+ xylem loading+ retrieval from the xylem'>2.4.2 Na+ retrieval from the xylem+ recirculation in the phloem'>2.4.3 Na+ recirculation in the phloem+ extrusion or effiux from the root'>2.4.4 Na+ extrusion or effiux from the root+ into the vacuoles'>2.4.5 Intracellular compartmentation of Na+ into the vacuoles+ excretion'>2.4.6 Na+excretionCHAPTER 3:MATERIAL AND METHODS3.1 Plant material and growth condition3.2 Treatments+ and K+ concentration determination'>3.3 Growth measurements,and Na+ and K+ concentration determination22Na+ influx experiments'>3.422Na+ influx experiments3.5 Statistical analysisCHAPTER 4:RESULTS22Na+ influx in Suaeda maritima'>4.1 The bases of root 22Na+ influx in Suaeda maritima22Na+ influx'>4.1.1 Time course of root 22Na+influx+ concentration on root 22Na+ influx'>4.1.2 Effects of external Na+ concentration on root 22Na+influx22Na+ influx and root Na+ concentration'>4.1.3 The correlation between root 22Na+ influx and root Na+concentration22Na+ influx and fresh weight of the root'>4.1.4 The correlation between 22Na+ influx and fresh weight of the root22Na+ loss during washing and blotting'>4.1.5 Root 22Na+ loss during washing and blotting+ uptake pathways in S.maritima by various inhibitors'>4.2 Differentiation of Na+ uptake pathways in S.maritima by various inhibitors2+and Li+on22Na+ influx of S.maritima under low(25 mM NaCl)and high(150 mM NaCl)salinity'>4.2.1 Effects of Ca2+and Li+on22Na+ influx of S.maritima under low(25 mM NaCl)and high(150 mM NaCl)salinity+和Cs+on22Na+ influx of S.maritima under low and high salinity'>4.2.2 Effects of TEA+和Cs+on22Na+ influx of S.maritima under low and high salinity2+blocked22Na+ influx of S.maritima under both low and high salinity'>4.2.3 Ba2+blocked22Na+ influx of S.maritima under both low and high salinity+'>4.2.4 The turning-point of external NaCl concentrations for the inhibitory effects of TEA++ and Ba2+on22Na+ influx among S.maritima,wheat and rice'>4.2.5 Comparison of the inhibitory effects of TEA+ and Ba2+on22Na+ influx among S.maritima,wheat and rice4+ altered the effects of TEA+ and Ba2+on22Na+influx,Na+ accumulation and net Na+ uptake of S.maritima'>4.2.6 NH4+ altered the effects of TEA+ and Ba2+on22Na+influx,Na+ accumulation and net Na+ uptake of S.maritima+,K+ accumulation and growth in S.maritima'>4.2.7 Effects of a CCC inhibitor on Na+,K+ accumulation and growth in S.maritima+ accumulation,growth and tissue water in S.maritima with increasing concentration of NaCl'>4.2.7.1 The effects of a CCC inhibitor on Na+ accumulation,growth and tissue water in S.maritima with increasing concentration of NaCl+ accumulation,growth and tissue water in S.maritima with increasing concentration of KCl'>4.2.7.2 The effects of a CCC inhibitor on K+ accumulation,growth and tissue water in S.maritima with increasing concentration of KCl+ on Na+ uptake and accumulation of S.maritima'>4.3 Effects of external K+ on Na+ uptake and accumulation of S.maritima+on22Na+ influx and Na+ accumulation after 3 d of NaCl(2.5-200 mM)and KCl(10 or 50 mM)treatments'>4.3.1 Effects of K+on22Na+ influx and Na+ accumulation after 3 d of NaCl(2.5-200 mM)and KCl(10 or 50 mM)treatments+on22Na+ influx after 12 h of NaCl(2.5-200 mM)and KCl(10 or 50 mM)treatments'>4.3.2 Effects of K+on22Na+ influx after 12 h of NaCl(2.5-200 mM)and KCl(10 or 50 mM)treatments+on22Na+ influx and Na+ accumulation with 3 d of K+ starvation before12 h of NaCl(2.5-200 mM)and KCl(10 or 50 mM)treatments'>4.3.3 Effects of K+on22Na+ influx and Na+ accumulation with 3 d of K+ starvation before12 h of NaCl(2.5-200 mM)and KCl(10 or 50 mM)treatments+,K+ accumulation and 22Na+ influx in S.maritima cultured after salt stress treatment'>4.4 Time-course changes of Na+,K+ accumulation and 22Na+ influx in S.maritima cultured after salt stress treatment+ concentration in roots and shoots of S.maritima after salt stress treatment'>4.4.1 Time-course changes of Na+ concentration in roots and shoots of S.maritima after salt stress treatment22Na+ influx into excised roots of S.maritima after salt stress treatment'>4.4.2 Time-course changes of 22Na+ influx into excised roots of S.maritima after salt stress treatment+ concentration and Na+/K+ ratio in roots and shoots of S.maritima after salt stress treatment'>4.4.3 Time-course changes of K+ concentration and Na+/K+ ratio in roots and shoots of S.maritima after salt stress treatmentCHAPTER 5:DISCUSSION+ uptake and transport pathways in higher plants'>5.1 S.maritima is a valuable plant material for characterizing Na+ uptake and transport pathways in higher plants+ entry into root cells in plants'>5.2 NSCCS and LCT1 were not supported to be the major pathways for Na+ entry into root cells in plants+ channel proteins might function in mediating low-affinity Na+ uptake through two pathways'>5.3 Two different K+ channel proteins might function in mediating low-affinity Na+ uptake through two pathways+ uptake under low salinity condition'>5.3.1 HKT-type transporter might mediate low-affinity Na+ uptake under low salinity condition+ uptake under high salinity condition'>5.3.2 AKT1-type channel might mediate low-affinity Na+ uptake under high salinity condition5.3.3 The turning-point of external NaCl concentrations for the two pathways+ exclusion among S.maritima,wheat and rice'>5.4 Comparison of the function of HKT-type transporter in Na+ exclusion among S.maritima,wheat and rice+ exclusion in S.maritima under high salinity condition'>5.5 HKT-type protein and ABC transporter involved in plasma membrane ATPase activity may play roles in root Na+ exclusion in S.maritima under high salinity condition+ uptake,especially under high salinity condition,but no significant effects on K+ uptake'>5.6 CCC transporter also might be a candidate for mediating low-affinity Na+ uptake,especially under high salinity condition,but no significant effects on K+uptake+(5 and 10 mM)stimulate Na+ uptake under high salinity(100-200 mM NaCl)'>5.7 Low concentration of K+(5 and 10 mM)stimulate Na+ uptake under high salinity(100-200 mM NaCl)+,K+ accumulation and 22Na+ influx in S.maritima cultured after salt stress treatment'>5.8 Time-course changes of Na+,K+ accumulation and 22Na+ influx in S.maritima cultured after salt stress treatment+ concentration in roots and shoots and root 22Na+ influx of S.maritima after salt stress treatment'>5.8.1 Time-course changes of Na+ concentration in roots and shoots and root 22Na+ influx of S.maritima after salt stress treatment+ concentration and Na+/K+ ratio in roots and shoots of S.maritima after salt stress treatment'>5.8.2 Time-course changes of K+ concentration and Na+/K+ ratio in roots and shoots of S.maritima after salt stress treatmentCHAPTER 6:CONCLUSIONReferencesAcademic papers,accomplished and undertaken projects
相关论文文献
- [1].高校财务预算改革探讨——以NA高校为例[J]. 中国市场 2020(09)
- [2].NaCl胁迫对胡麻种子萌发、幼苗生长及Na~+/H~+逆向转运蛋白基因表达的影响[J]. 山东农业科学 2020(07)
- [3].不同盐碱区菊芋植株K~+和Na~+的分布特征[J]. 安徽农业科学 2016(33)
- [4].三氯异氰尿酸中Na~+含量的控制方法[J]. 盐业与化工 2016(08)
- [5].托伐普坦对肝硬化腹水并发低钠血症患者Na~+调控作用的影响[J]. 中国生化药物杂志 2016(07)
- [6].NaCl处理对海滨锦葵N、P和Na~+、K~+含量及其化学计量特征的影响[J]. 核农学报 2015(06)
- [7].基于Na~(22+)放射性同位素的密度计在矿浆检测上的运用[J]. 世界有色金属 2020(16)
- [8].盐胁迫对银柴胡生物量积累及Na~+、K~+含量的影响[J]. 时珍国医国药 2020(01)
- [9].盐胁迫对海滨锦葵生长及Na~+、K~+离子积累的影响[J]. 生态环境学报 2013(01)
- [10].电感耦合等离子体原子发射光谱法测量碱金属K、Na的分析[J]. 化学工程与装备 2013(04)
- [11].U(Ⅵ)在Na-凹凸棒石黏土上的吸附[J]. 核化学与放射化学 2012(05)
- [12].Na~(131)Ⅰ再次治疗甲状腺功能亢进症的时间分析[J]. 临床医学 2011(02)
- [13].NA列加权和的完全收敛性[J]. 佳木斯大学学报(自然科学版) 2010(05)
- [14].混合盐碱胁迫对金山绣线菊Na~+和K~+分布影响的研究[J]. 林业科技 2009(05)
- [15].土壤紧实度和盐胁迫对海滨锦葵生长和Na~+·K~+吸收的影响[J]. 安徽农业科学 2015(19)
- [16].F、K、Na对氧化球团回转窑结圈性能的影响[J]. 烧结球团 2013(06)
- [17].Na~+在霸王适应渗透胁迫中的生理作用[J]. 草业学报 2011(01)
- [18].NaCl胁迫对碱地风毛菊苗期植株Na~+、K~+含量的影响[J]. 草原与草坪 2011(02)
- [19].吲哚布芬对NA预收缩的大鼠离体胸主动脉环张力的影响[J]. 中西医结合心脑血管病杂志 2011(06)
- [20].NA同分布序列加权和的相合性[J]. 吉林大学学报(理学版) 2010(01)
- [21].血清Na~+浓度对慢性乙型重型肝炎患者预后的评价作用[J]. 实用肝脏病杂志 2010(01)
- [22].强平稳NA随机场对数律的收敛性[J]. 宁夏大学学报(自然科学版) 2010(03)
- [23].NaCl胁迫对枳椇各器官Na~+、K~+吸收的影响[J]. 北方园艺 2010(20)
- [24].NaCl胁迫对海滨木槿种子萌发及Na~+、K~+含量的影响[J]. 安徽农业科学 2008(08)
- [25].合成分子筛Na~+-K~+离子交换热力学的研究[J]. 盐业与化工 2008(04)
- [26].Na型粉末树脂回收废水中低浓度氨氮[J]. 环境工程学报 2020(01)
- [27].复盐胁迫下结缕草K~+、Na~+吸收与运输的特点[J]. 热带作物学报 2016(11)
- [28].离子交换器再生用工业盐酸中Na~+含量的控制标准[J]. 冶金动力 2017(05)
- [29].莳萝蒿适应盐渍环境的Na~+区域化方式和生理特征[J]. 生态学报 2014(21)
- [30].泰语naη与汉语“囊”同源初探[J]. 大家 2012(20)
标签:吸收途径论文; 低亲和性吸收途径论文; 内流论文; 离子通道抑制剂论文; 积累论文; 拒钠论文; 海滨碱蓬论文;