论文摘要
Hepcidin是一种低分子量的富含半胱氨酸的肝脏多肽激素,最初从人类血浆和尿液中分离得到。Hepcidin对体内铁稳态有重要调节作用,hepcidin的缺乏会导致多种疾病。另外,hepcidin在体外表现出良好的抗细菌及真菌活性。化学合成及从组织中提取hepcidin成本较高且存在许多困难。至今,对于在真核生物中表达像hepcidin这样的小分子多肽的报道还很少。酵母像细菌一样容易进行连续培养,与高等动物表达蛋白的方式相似,因此在本研究中我们希望在酵母中高效表达有活性的重组hepcidin,在本研究中,我们在毕赤酵母中表达了人类hepcidin多肽,并对表达条件进行了优化。根据hepcidin的氨基酸序列以及毕赤酵母中密码子的偏好性,合成了全长的hepcidin基因,克隆到酵母表达载体pPIC9K上并转化毕赤酵母GS115菌株。在涂有合适浓度的遗传霉素抗性平板上筛选转化予,并经PCR验证。在MM和MD平板上鉴定转化子表型,验证后发现均为His+Mut+。重组毕赤酵母菌株在BMGY培养基中培养(28℃,260 rpm),每24h加入0.5%的甲醇诱导。转化空pPIC9K质粒的菌株作为对照。Tricine-SDS-PAGE显示2.2kD条带,表明异源蛋白在毕赤酵母中成功表达。多肽表达水平和活性分别通过SDS-PAGE和免疫反应检测。对重组酵母的培养及诱导条件进行了优化。结果表明胰蛋白胨,酵母提取物,稳定的PH对重组酵母生长和蛋白表达有显著影响。28℃0.5%的申醇诱导48h,BMMY培养基与其他培养基相比(BMM和MM)最适合hepcidin表达。收集诱导60 h的发酵液,重组多肽通过等电点沉淀和凝胶过滤色谱纯化。含有hepcidin的部分通过反向HPLC进一步纯化。另外,Hepcidin(11min)洗脱时间与化学合成的hepcidin相同。Hepcidin的分子量与计算的分子量(2191.77Da)一致。收集的每一部分通过ELISA验证是否含有重组Hepc,并验证得到的物质确实为hepcidin。另外,LC.ESI-MS图谱显示2192.0 Da的hepcidin分子离子峰。最后重组hepcidin对金黄色葡萄球菌和枯草芽孢杆菌具有明显的抗菌活性。
论文目录
摘要ABSTRACTLIST OF FIGURESLIST OF TABLESCHAPTER 1:INTRODUCTION AND LITERATURE REVIEW1.1 FUNCTION OF IRON IN THE BODY1.1.2 Harms caused by Iron Overload and Deficiency1.1.3 Mechanism of Iron Metabolism in Body1.1.4 Regulation of Iron Metabolism in Human Body1.2 HEPCIDIN:A NEW MEDIATOR OF INNATE IMMUNITY1.2.1 Structure of Hepcidin1.2.2 Synthesis and Degradation of Hepcidin1.2.3 Hormonal Activity of Hepcidin1.2.4 Regulation of Hepcidin Synthesis1.2.5 Regulation of Cellular Iron Efflux by Hepcidin1.2.6.Biological Functions of Hepcidin1.2.7 Applications in Health1.3.Pichia pastoris;A MODEL HOST SYSTEM FOR RECOMBINANT EXPRESSION1.3.1.Pichia pastoris as a Methylotrophic Expression System1.3.2.Two Alcohol Oxidase Proteins1.3.3.Pichia pastoris Expression Vectors1.3.4.Pichia Host Strains1.3.5.Intracellular and Secretory Expression of Recombinant Protein1.3.6.Optimization of Secretory Protein Expression1.4 PRESENT RESEARCH WORKCHAPTER 2:CLONING OF RECOMBINANT EXPRESSION VECTOR2.1 DESIGN AND SYNTHESIS OF HEPCIDIN SEQUENCE2.2 RECOMBINANT EXPRESSION VECTOR PPIC9K-H2.2.1.Different Media and Methods of Preparation2.2.1.1.Growth Media for E.coli2.3 CONSTRUCTION OF RECOMBINANT EXPRESSION PLASMID pPIC9K-H2.3.1.Strains and Plasmids2.3.2.Chemicals and Reagents2.3.3.Equipment2.3.4.Experimental Methods2.3.4.1.PCR Amplification of the Hepcidin Fragment2.3.4.2.Extraction of Plasmid DNA2.3.4.3.DNA Double Digestion2.2.4.4.Gel Electrophoresis for Extractions of Required Fragments2.2.4.5.Phenol-Chloroform Extraction2.2.4.6.Ligation of pPIC9K Vector with the Hepcidin Gene Fragment2.3.4.7.Transformation of pPIC9K-H into E.coli2.4.RESULTS AND ANALYSIS2.4.1.Results of the Hepcidin Sequence2.4.2.The Aonfirmation of the Amplified Fragment2.4.3.DNA Sequencing2.5.SUMMARY OF THE CHAPTERCHAPTER 3:PICHIA PASTORIS GS115 AS A HOST FOR HEPCIDIN EXPRESSION3.1.EXPERIMENTAL MATERIALS3.1.1.Pichia Growth Media and Reagents3.1.1.1.10X YNB(Yeast Nitrogen Base)3.1.1.2.500X B(0.02%Biotin)3.1.1.3.100X H(0.4%Histidine)3.1.1.4.10X D(20%Dextrose)3.1.1.5.10X M(5%Methanol)3.1.1.6.10X GY(10%Glycerol)3.1.1.7.100X AA(0.5%of each Amino Acid)3.1.1.8.Potassium Phosphate buffer(1 M) pH 6.0:3.1.1.9.YPD;Yeast Extract Peptone Dextrose Medium3.1.1.10.Preperation of YPD-Geneticin plates3.1.1.11.MGY and MGYH Minimal Glycerol Medium+Histidine3.1.1.12.RD and RDH Liquid Media3.1.1.13.RDB and RDHB Agar Plates3.1.1.14.MD and MDH Minimal Dextrose Medium+Histidine(1 liter)3.1.1.15.MM and MMH Minimal Methanol+Histidine3.1.1.16.Buffered Minimal Glycerol and Buffered Minimal Methanol3.1.1.17.BMGY and BMMY3.1.1.18.DTT(1M)3.2.EXPERIMENTAL METHODS3.2.1.Preparation of Pichia pastoris GS115 Eelectrocompetent Cells3.2.2.Electroporation of Pichia pastoris3.2.2.1.Linearization of the Recombinant Plasmid DNA(pPIC9K-H)3.2.2.2.Electroporation3.2.3.Analysis of the Results3.2.4.Screening and Selection of Recombinant Transformants(His+Mut+)3.2.5.Analysis of Pichia Integrants3.2.6.Isolation of the Genomic DNA from Transformed Pichia Strains3.2.7.PCR analysis of Pichia integrants3.2.7.1.PCR Analysis with Pichia Purified Genomie DNA3.3.SUMMARY OF THE CHAPTERCHAPTER 4:EXPRESSION OF PEPTIDE IN THE RECOMBINANT PICHIA PASTORIS4.1.EXPERIMENTAL MATERIALS4.1.1.Strains4.1.2.Media and Reagents4.1.3.Equipment4.2.EXPERIMENTAL METHODS4.2.1 Induced Expression of Recombinat Yeast Plasmid4.2.2.Determination of Protein Concentration4.2.2.1.Coomassie Brilliant blue G250 dye:4.2.3.Tricine-SDS-PAGE Electrophoresis4.2.3.1.Reagents and Equipments4.2.3.2 Liquid and gel electrophoresis buffer4.2.3.3.Preparation of Electrophoresis Sample(Secreted Expression):4.2.4.Western Blot Analysis of the Protein4.2.5.Optimization of Culture and Expression Conditions4.2.5.1.Comparison of the Effect of Various Media and Temperature4.2.5.2.Effect of the Final Concentration of Methanol during Induction on Protein Expression4.3.RESULTS AND ANALYSIS4.3.1.Trieine-SDS-PAGE and Determination of Protein Concentration4.3.2.Expression of Peptide and Western Blot4.3.3.Optimization of Expression Conditions4.3.3.1.Effect of the Final Concentration of Methanol on Yeast Growth4.4.SUMMARY OF THE CHAPTERCHAPTER 5:SEPARATION AND PURIFICATION OF RECOMBINANT HEPCIDIN PROTEIN5.1.EXPERIMENTAL MATERIALS AND METHODS5.1.1.Reagents5.1.2.Instruments5.2.PROTEIN PRECIPITATION5.2.1.Isoelectric Point Precipitation5.2.2.Protein Seperation by Gel Chromatography5.2.2.1.Gel Processing5.2.2.2.Chromatography Column Preparation5.2.3.HPLC and MS analysis of the Hepcidin Protein5.2.3.1.Reagents5.2.3.3.Procedure5.2.4.ELISA Competitive Binding Assay5.2.5.Antibacterial activity of recombinant protein5.3.RESULTS AND ANALYSIS5.3.1.Precipitation and Seperation by Sephadex G-25 gel Chromatography5.3.2.Reverse Phase Liquid Chromatography(RP-HPLC)5.3.3.Mass Spectroscopic(MS) Analysis5.3.4.Detection by ELISA and Characterization of Recombinant Hepcidin5.3.5:Antimicrobial Activity of Recombinant Protein5.4.SUMMARY OF THE CHAPTERCHAPTER 6:SUMMARYREFERENCESANNEXURECURRICULUM VITAEDedicated To My ParentsACKNOWLEDGEMENTS
相关论文文献
- [1].酵母壁多糖的生物学功能及其对反刍动物的影响[J]. 饲料工业 2020(05)
- [2].高耐受酿酒酵母的筛选及酵母曲制备工艺的优化[J]. 酿酒科技 2020(02)
- [3].解脂酵母利用木糖研究进展[J]. 山东工业技术 2020(01)
- [4].高酸度水果果酒酿造产酯酵母的鉴定及发酵特性研究[J]. 中国酿造 2020(04)
- [5].产酯酵母及其产酯关键酶的研究进展[J]. 食品与发酵工业 2020(14)
- [6].酵母成替抗新风向!这家企业专研酵母11年,第一季度销量逆势增长20%[J]. 当代水产 2020(07)
- [7].饮料中霉菌和酵母计数检验结果不确定度的评定[J]. 食品安全导刊 2020(18)
- [8].酵母扩培工艺的变革[J]. 中外酒业·啤酒科技 2020(05)
- [9].发挥政府引导基金“酵母”作用[J]. 中国财政 2020(10)
- [10].增加零代酵母扩培收量方法研究[J]. 中外酒业·啤酒科技 2017(21)
- [11].如何验证酵母是活的[J]. 生物学通报 2018(07)
- [12].浅析葡萄酒相关酵母[J]. 现代农业 2017(01)
- [13].优化酵母数的检测方法[J]. 中外酒业·啤酒科技 2017(09)
- [14].发酵生产燃料乙醇过程中野生酵母的污染和控制[J]. 当代化工 2015(08)
- [15].硫胺素对鲁氏接合酵母高盐适应性的影响[J]. 中国酿造 2020(11)
- [16].昌黎产区产酶酵母多样性及其应用潜力分析[J]. 食品与发酵工业 2020(05)
- [17].白酒酒醅高产酯酵母筛选鉴定及其发酵性能研究[J]. 食品与机械 2020(06)
- [18].表达透明颤菌血红蛋白对圆红冬孢酵母油脂积累的影响[J]. 可再生能源 2020(09)
- [19].活酵母对猪大肠体外产甲烷的抑制作用[J]. 中国饲料 2020(18)
- [20].不同类型酵母杂交促进各类啤酒出现[J]. 中国食品学报 2019(10)
- [21].阶段控温提高透明质酸酶在毕赤酵母中的表达[J]. 食品与生物技术学报 2016(12)
- [22].小酵母大能量,这家专注做酵母的企业要上市的了[J]. 当代水产 2017(02)
- [23].富锌酵母形态与代谢动力学研究进展[J]. 中国药事 2016(04)
- [24].嗜渗酵母去留各抒己见[J]. 中国蜂业 2014(02)
- [25].小酵母大用途,酵母在水产生物制剂上的应用[J]. 当代水产 2015(03)
- [26].酵母魔术师[J]. 创新作文(小学版) 2016(16)
- [27].酵母的魔力[J]. 科学大众(小学版) 2015(05)
- [28].豆沙小面包和酵母[J]. 少年科学 2014(04)
- [29].酵母,人类健康的神奇小伙伴[J]. 中国食品 2008(18)
- [30].天然酵母中烘焙酵母的分离鉴定与性能优化[J]. 食品与发酵工业 2020(22)
标签:抗菌肽论文; 毕赤酵母论文; 分泌表达论文;
Hepcidin 20基因克隆及在毕赤酵母中的表达
下载Doc文档