钽酸盐与钒酸盐光催化材料的设计合成及性能研究

钽酸盐与钒酸盐光催化材料的设计合成及性能研究

论文摘要

从太阳能多元化利用角度考虑,已经有许多种类的太阳能转化体系被广泛深入的研究和开发,光催化体系就是其中之一。通过光催化体系可以利用太阳能实现光解水制氢或光降解有机污染物。因此,如何获得高性能低成本的光催化材料引起人们的广泛重视。钽、钒酸盐光催化材料在光解水制氢及光降解有机污染物方面性能优异,具有重要的研究价值和实际应用前景。本论文利用简单的一步法设计合成了具有不同结构的钽、钒酸盐材料,通过系统的表征研究了不同因素对催化性能的影响,得到了一系列性能优异的光催化剂。采用固相法制备了具有烧绿石构型Bi1.5ZnTa1.5O7(α-BZT)及Bi2Zn2/3Ta4/3O7(β-BZT)光催化材料,并通过Zn位Cu的掺杂进行了能带调控。在紫外光照射下,掺杂Cu的α-BZT催化活性相比于α-BZT提高了五倍。在可见光照射下,掺杂了Cu的催化剂在可见光下也表现出了较高的催化活性。通过基于密度泛函理论(DFT)的计算发现Cu掺杂导致催化剂能隙变窄的原因是在催化剂的导带和价带之间引入了由Cu3d轨道构成的杂质能级。进一步利用固相法制备了β-BZT并对其进行了Cu掺杂改性研究,发现0.01Cu掺杂后催化活性提高了近10倍,同时Cu掺杂后的β-BZT产生了可见光响应,表现出可见光分解水制氢性能。通过熔盐法制备了钽酸钠钾(NKT)系列单晶纳米立方催化剂,在牺牲剂甲醇存在的条件下,无需负载助催化剂,产氢活性高达19.9mmol·h-1;在分解纯水制氢方面,NKT的产氢速率也高达2.51mmol·h-1,较高的催化活性是因为Ta-O-Ta键的调控作用所致,但催化剂在分解纯水时氢氧并不按比例产生,且光稳定性较差。对NKT进行了B位Zr及Hf掺杂得到了单分散的纳米立方结构。将改性后的NKT用于分解纯水,最高产氢活性分别高达4.65mmol·h-1和4.96mmol·h-1,同时氢气和氧气的产生速率比值接近理论值(2:1),光稳定性也得到明显改善。利用熔盐法制备了钽酸钠锶(SNT)介晶光催化材料,比表面积最高达到40.6m2·g-1,产氢速率最高可达27.5mmol·h-1;在分解纯水的情况下,产氢和产氧速率分别可达4.89mmol·h-1和1.25mmol·h-1。高活性的原因主要是由于表面纳米台阶结构的存在,台阶的凸处可以作为产氢活性位,凹处可以作为产氧活性位。采用水热法制备了m-BiVO4分级结构光催化剂,最佳制备工艺为pH=3条件下180℃水热反应6h。利用尿素作为模板剂制备了具有空心球状结构的m-BiVO4分级结构催化剂,这种分级结构的构筑单元为m-BiVO4的截角八面体,形成机制为气泡模板机制。空心球状结构的m-BiVO4催化剂具有最优异的光催化性能。无需负载助催化剂,50min内可以在不添加双氧水的条件下降解超过80%的RhB,降解过程符合一级动力学方程,反应速率常数为0.035min-1。空心球状结构的m-BiVO4的降解机制为空穴降解,且在催化氧化异丙醇情况下具有较高的活性,同时催化剂具有优异的催化循环稳定性,循环4次后活性无明显降低。采用简单的一步熔盐法合成BiVO4及BiVO4/BiOCl光催化材料。利用LiNO3/NaNO3作为反应熔盐时的最佳熔盐与原料质量比为15:1,反应时间2h。制备的BiVO4为片状结构,在未负载任何助催化剂条件下,50min对RhB的去除率可超过90%,降解过程符合一级动力学方程,反应速率常数为0.050min-1。利用LiCl/KCl作为反应熔盐得到了BiVO4/BiOCl异质结构,最佳熔盐与原料质量比为10:1,反应时间2h。BiVO4/BiOCl呈现由纳米片组成的花状结构,纳米片的尺寸为200-500nm,厚度为5nm左右。HRTEM及元素面扫测试发现花状主体为BiOCl,BiVO4以纳米晶的形式附着在片状结构上。催化剂30min对RhB的去除率超过了90%,反应速率常数相对于BiVO4提高了60%。

论文目录

  • 摘要
  • Abstract
  • 目录
  • 第1章 绪论
  • 1.1 课题背景及研究的目的和意义
  • 1.2 光催化反应过程基本原理
  • 1.3 光催化的主要应用
  • 1.3.1 光催化分解水制氢(氧)
  • 1.3.2 光催化降解有机污染物
  • 1.4 光催化剂研究现状
  • 1.4.1 Ti、Zr 系氧化物光催化剂
  • 1.4.2 Nb、Ta 系氧化物光催化剂
  • 1.4.3 Bi 系氧化物光催化剂
  • 1.4.4 金属氮化物、氮氧化物光催化剂
  • 1.4.5 金属硫化物光催化剂
  • 1.5 提高光催化活性的主要手段
  • 1.5.1 催化剂能带调控
  • 1.5.2 形貌调控及表面敏化
  • 1.5.3 催化剂的低尺寸化
  • 1.5.4 构筑异质结构
  • 1.6 本文的主要研究内容
  • 第2章 实验材料及表征方法
  • 2.1 实验试剂及实验仪器
  • 2.1.1 实验试剂
  • 2.1.2 实验仪器
  • 2.2 主要表征方法
  • 2.2.1 X 射线衍射(XRD)表征
  • 2.2.2 热重-差热(TG-DTA)表征
  • 2.2.3 扫描电子显微镜(SEM)表征
  • 2.2.4 透射电子显微镜(TEM)表征
  • 2.2.5 X 射线光电子能谱(XPS)表征
  • 2.2.6 傅里叶变换-红外光谱(FT-IR)表征
  • 2.2.7 比表面积(BET)表征
  • 2.2.8 电感耦合等离子体质谱(ICP-MS)
  • 2.2.9 光催化性能表征
  • 第3章 烧绿石型结构钽酸盐的制备及能带调控
  • 3.1 引言
  • 1.5ZnTa1.5O7(α-BZT)的改性及电子结构研究'>3.2 Bi1.5ZnTa1.5O7(α-BZT)的改性及电子结构研究
  • 1.5ZnTa1.5O7的制备'>3.2.1 Bi1.5ZnTa1.5O7的制备
  • 1.5Zn1-xCuxTa1.5O7(x=0.01、0.02、0.03、0.04)的制备'>3.2.2 Bi1.5Zn1-xCuxTa1.5O7(x=0.01、0.02、0.03、0.04)的制备
  • 3.2.3 晶体结构分析
  • 3.2.4 形貌分析
  • 3.2.5 光吸收及光催化性能
  • 3.2.6 能带及电子结构
  • 2Zn2/3-xCuxTa4/3O7(x=0.01-0.04)的制备及改性'>3.3 Bi2Zn2/3-xCuxTa4/3O7(x=0.01-0.04)的制备及改性
  • 2Zn2/3-xCuxTa4/3O7的制备'>3.3.1 Bi2Zn2/3-xCuxTa4/3O7的制备
  • 3.3.2 结构及形貌分析
  • 3.3.3 光吸收及光催化性能
  • 3.4 本章小结
  • 第4章 钙钛矿型结构钽酸盐的熔盐制备及性能研究
  • 4.1 引言
  • 3纳米晶系列样品的合成及性能研究'>4.2 (Na, K) TaO3纳米晶系列样品的合成及性能研究
  • 4.2.1 晶体结构表征
  • 4.2.2 形貌演变机制
  • 4.2.3 吸光性能研究
  • 4.2.4 组成及催化机理分析
  • 4.2.5 B 位改性对催化活性、稳定性的影响
  • 3介观晶体样品的合成及性能研究'>4.3 (Sr, Na) TaO3介观晶体样品的合成及性能研究
  • 4.3.1 晶体结构及微观结构分析
  • 4.3.2 介晶结构的调变机制
  • 4.3.3 光催化性能分析
  • 4.4 本章小结
  • 第5章 分级结构钒酸铋的制备及性能研究
  • 5.1 引言
  • 4的制备'>5.2 BiVO4的制备
  • 4分级结构的影响'>5.3 制备工艺对 BiVO4分级结构的影响
  • 5.3.1 pH 值的影响
  • 5.3.2 反应温度的影响
  • 5.3.3 反应时间的影响
  • 4分级结构'>5.4 以尿素为模板剂构筑 BiVO4分级结构
  • 5.4.1 结构表征与精修
  • 5.4.2 空心分级结构的理论模拟与形成机制
  • 5.4.3 光吸收性能
  • 5.4.4 光催化性能及光催化机制
  • 5.5 本章小结
  • 第6章 熔盐法制备钒酸铋及其复合异质结构
  • 6.1 引言
  • 4'>6.2 熔盐法合成 BiVO4
  • 6.2.1 制备工艺
  • 6.2.2 结构及形貌分析
  • 6.2.3 熔盐量对形貌的调控
  • 6.2.4 形貌演变机制
  • 4/BiOCl 异质结构'>6.3 熔盐法构筑 BiVO4/BiOCl 异质结构
  • 6.3.1 制备工艺
  • 6.3.2 熔盐条件及调控机制
  • 6.3.3 异质结构表征及催化机理分析
  • 6.4 本章小结
  • 结论
  • 参考文献
  • 攻读博士学位期间发表的论文及其它成果
  • 致谢
  • 个人简历
  • 相关论文文献

    标签:;  ;  ;  ;  ;  

    钽酸盐与钒酸盐光催化材料的设计合成及性能研究
    下载Doc文档

    猜你喜欢