论文摘要
随着我国社会经济的飞速发展,资源的约束越来越突出,在这种情况下,为了保证经济“又好又快”的发展,我们国家经济结构要面临转型,即从过去那种“高投入、高能耗、高污染、低产出”的模式向“低投入、低能耗、低污染、高产出”转变。但,目前我国仍然沿袭了以消耗大量资源为特征的传统发展模式,导致能源浪费现象十分严重。这不仅不利于企业绩效的提高和企业的发展,而且破坏了环境,影响了国民经济的可持续发展。世界各国普遍采用能耗评价体系来评价企业能耗水平,但现行企业能耗评价体系在指标设定上着重经济指标,对于环保指标设置的不够全面,且指标冗余性较大,不利于企业能源审计方法的推广,这将导致能源审计对国家能源与环境可持续性发展的导向性变差。因此,加强现有能源审计体系的环保指标,优化指标体系的内部结构,并发展新的能源审计工具,对推进和加快能源审计方法在企业的应用具有重要的现实意义。本文以现有企业能源审计评价体系和国家可持续发展的最新战略部署为基础,结合笔者多年从事能源审计工作的切身经验,从体系指标在使用中存在的问题出发,提出了以下改进:1)为降低现行能源审计指标评价体系的指标冗余度,提出用PCA主成分分析的方法降低数据维度,所处理得到的主元保留了原数据的绝大部分特征,降低了能源审计数据处理的难度。2)根据国家政策和对标管理理念,提出了基于BP神经网络的人工智能能源审计方法,并对6家钢铁企业的同年能源审计数据进行了应用。结果表明,该模型能够达到较好的模式识别效果,能有效降低企业对能源审计机构的业务依赖性。3)为了全面监督企业低碳化耗能的水平,引入了能源审计新指标-对标低碳系数,并对企业对标低碳系数进行了分级。本文的研究成果为完善能源审计体系和审计数据分析提供了新的思路。
论文目录
摘要ABSTRACT第一章 绪论1.1 选题背景1.2 问题的提出及研究意义1.2.1 能源审计系统存在的问题1.2.2 研究意义1.3 研究内容及研究思路1.3.1 研究内容1.3.2 研究思路第二章 能源审计综述2.1 能源审计理论2.1.1 能源审计概念2.1.2 能源审计内容2.1.3 能源审计的作用2.1.4 能源审计的形式2.2 国外能源审计概况2.3 国内能源审计的发展2.3.1 千家企业节能目标责任评价体系2.3.2 特定行业能源评价体系2.4 本章小结第三章 数据的PCA数据降维方法3.1 PCA理论3.1.1 PCA思想3.1.2 主成份性质3.1.3 PCA计算步骤3.2 PCA在能源审计领域的可行性分析3.2.1 能源审计数据噪声和指标冗余3.2.2 PCA数据降维对标3.3 审计数据降维对标的性能评价3.4 本章小结第四章 基于BP神经网络的人工智能能源审计方法及应用4.1 神经网络理论4.1.1 神经网络原理4.1.2 神经网络的应用4.2 基于BP神经网络的能源审计方法4.2.1 BP神经网络4.2.2 基于PCA的特征向量提取4.2.3 BP神经网络能源审计方法建模4.3 钢铁厂能耗分析应用实例4.3.1 PCA主元分析应用4.3.2 基于神经网络的能源审计模型4.4 智能审计模型的优势4.5 小结第五章 能源审计新指标:对标低碳系数5.1 当前能源审计发展趋势5.1.1 耗能行业能效对标管理5.1.2 标杆选定与能效潜力指数5.1.3 低碳经济发展模式5.2 对标低碳系数作为能源审计新指标的必要性及其内涵5.2.1 必要性5.2.2 内涵5.3 对标低碳系数的计算方法5.4 对标低碳系数等级划分5.5 案例解析5.6 本章小结第六章 总结参考文献攻读学位期间主要研究成果攻读硕士学位期间参与的审计项目致谢
相关论文文献
标签:能源审计论文; 指标体系论文; 评价体系论文; 神经网络论文;
基于PCA数据降维和神经网络的能源审计对标评价方法的研究
下载Doc文档