测量液位的波纹膜片式光纤Bragg光栅压力传感器

测量液位的波纹膜片式光纤Bragg光栅压力传感器

论文摘要

液位测量传感器作为自动控制、计量的重要核心元件被大量应用在石化等工业领域,以保证生产过程各环节中液位的平衡并为进行经济核算提供可靠的依据;维持正常生产、保证产品的产量和质量、以及保证安全生产具有重要的意义。易燃液体,如汽油等,通常是被储藏在高度为几十米以下的密闭容器中,如何安全并可靠的测量出密闭容器中的易燃液体液位一直是石化行业的重点问题。上述密闭容器中的易燃液体,其对容器底部所产生的压强通常为几个兆帕。目前国内外对于易燃液体液位测量的液位传感器,一般都是电学传感器。这类传感器虽然测量水平已达到较高的自动化程度和测量精度,但上述方法大都采用电激励和电信号传输,在测量易燃液体时极易因火花放电而引起火灾或爆炸,即使采用防爆处理过的本安传感器也还是存在有一定的风险,且价格较高并较难形成测量网络。光纤Bragg光栅传感技术是一种新型的传感技术,通过Bragg波长的漂移来获得诸如应力、温度、振动、加速度等外部参量,由于它的测量手段和传输途径都为光信号,因此具有不受环境的电磁干扰、本安等优点,能够极大地提高测量的安全性和可靠性。因而在测量易燃液体液位领域中,光纤Bragg光栅传感器具有广阔的应用前景。本课题采用光纤Bragg光栅作为敏感元件,对其用于液位测量的相关理论和技术进行了一系列理论分析和实验研究。针对现有条件,选择低压作为实验研究对象,并采用较为简单的压力法测量方式,以便掌握传感数学模型在实际测量中的特点,并提出相应的改进方案。后期依据实验验证的传感数学模型原理,改变换能元件的材料和尺寸来达到增大测量对象量程的目的。目前通过理论分析与实验研究已完成了以下主要工作:1、基于膜片中心挠度变化与所受压强呈线性关系;基于粘贴在等强度悬臂梁上的光纤Bragg光栅其波长波变化与悬臂梁所受应力呈线性关系等理论建立了传感模型,设计了测量液位的光纤Bragg光栅压力传感器;2、根据所选材料及其尺寸计算出该传感器的理论灵敏度。理论灵敏度为7pm/cm;理论分别率为:0.14cm/pm。3、通过实验的方式,测量出了实际灵敏度为:加载4.9pm/cm,卸载5.4pm/cm;实际分辨率为:0.20cm/pm;4、实验结果表明Bragg波长漂移值与液位变化量呈较好的线性关系,实验证明了该传感器的设计是可行的,这为后期传感器的实用化研究提供了良好的开端。

论文目录

  • 摘要
  • ABSTRACT
  • 目录
  • 第一章 绪论
  • 1.1 引言
  • 1.2 典型液位测量方式及其分类
  • 1.2.1 静压式物位计
  • 1.2.2 浮力式液位计
  • 1.2.3 电气式物位计
  • 1.2.4 超声波物位计
  • 1.3 光纤Bragg光栅压力传感器的发展现状
  • 1.3.1 光纤Bragg光栅的传感原理
  • 1.3.2 光纤Bragg光栅压力传感器的发展
  • 1.4 小结
  • 第二章 光纤Bragg光栅压力传感器的设计
  • 2.1 引言
  • 2.2 光纤Bragg光栅压力传感器的传感探头结构及其测量原理
  • 2.3 传感器的传感数学模型
  • 2.3.1 波纹膜片的传感数学模型
  • 2.3.3 悬臂梁与光纤Bragg光栅之间的数学传感模型
  • 2.3.4 压力传压杆
  • 2.4 小结
  • 第三章 光纤Bragg光栅压力传感器的研制
  • 3.1 引言
  • 3.2 传感器的材质选择
  • 3.3 传感器的加工原理图及其加工
  • 3.3.1 膜片的参数及其加工
  • 3.3.2 金属外壳的加工原理图及其加工
  • 3.3.3 悬臂梁的加工原理图
  • 3.3.4 金属传压杆的加工原理图
  • 3.3.5 固定底座的加工原理图
  • 3.3.6 金属传压杆,悬臂梁和固定底座的加工
  • 3.4 传感器单元器件的组装图
  • 3.4.1 金属外壳的组装图
  • 3.4.2 传感器探头组装图
  • 3.5 光纤Bragg光栅的粘贴与熔接
  • 3.5.1 光纤Bragg光栅的粘贴
  • 3.5.2 光纤的熔接和保护
  • 3.6 传感器的防水密封
  • 3.7 传感器成品的总装图
  • 3.8 小结
  • 第四章 光纤Bragg光栅压力传感器的液位测试
  • 4.1 引言
  • 4.2 测试原理
  • 4.2.1 测量方式
  • 4.2.2 光纤Bragg光栅传感系统的组成
  • 4.2.3 传感器的测量数学模型
  • 4.2.4 传感器的理论测量精度
  • 4.3 实验与数据分析
  • 4.3.1 实验结果
  • 4.3.2 实验数据分析
  • 4.3.3 传感器的性能指标
  • 第五章 总结与展望
  • 5.1 总结
  • 5.2 展望
  • 致谢
  • 参考文献
  • 附录A (参与的课题)
  • 附录B (撰写的论文)
  • 相关论文文献

    • [1].Testing the Universality of Free Fall by Comparing the Atoms in Different Hyperfine States with Bragg Diffraction[J]. Chinese Physics Letters 2020(04)
    • [2].Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation[J]. Chinese Physics Letters 2020(07)
    • [3].固定于水面的多个半圆形结构物的水波Bragg反射[J]. 上海交通大学学报 2019(09)
    • [4].基于光纤Bragg光栅传感器的车辆载重动态检测系统的初步开发[J]. 通讯世界 2016(24)
    • [5].Spectral Beam Combining of Fiber Lasers by Using Reflecting Volume Bragg Gratings[J]. Chinese Physics Letters 2016(12)
    • [6].Proton Bragg Peak Irradiation Experiment of Components for Aerospace[J]. Annual Report of China Institute of Atomic Energy 2019(00)
    • [7].光纤Bragg光栅振动传感器的标定与不确定度分析[J]. 机械科学与技术 2020(11)
    • [8].BRIGHT:the three-dimensional X-ray crystal Bragg diffraction code[J]. Nuclear Science and Techniques 2019(03)
    • [9].Periodic structural defects in Bragg gratings and their application in multiwavelength devices[J]. Photonics Research 2016(02)
    • [10].Wave Power Focusing due to the Bragg Resonance[J]. China Ocean Engineering 2017(04)
    • [11].基于光纤Bragg光栅传感器的现役高桩码头结构健康监测系统设计与实施[J]. 水道港口 2016(02)
    • [12].Numerical Simulation of Bragg Reflection Based on Linear Waves Propagation over A Series of Rectangular Seabed[J]. China Ocean Engineering 2008(01)
    • [13].Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chinese Physics Letters 2015(05)
    • [14].An introduction to Bragg diffraction-based cold atom interferometry gravimeter[J]. Instrumentation 2015(04)
    • [15].Interrogating a Fiber Bragg Grating Vibration Sensor by Narrow Line Width Light[J]. Journal of Electronic Science and Technology of China 2008(04)
    • [16].Demodulation System for Fiber Bragg Grating Sensors Using Digital Filtering Technique[J]. Transactions of Tianjin University 2008(01)
    • [17].Modification of Interfacial Performance of Fiber Bragg Grating Embedded in the Composite Materials[J]. Journal of Wuhan University of Technology(Materials Science) 2017(04)
    • [18].Bragg reflection in a quantum periodic structure[J]. Chinese Optics Letters 2015(12)
    • [19].基于光纤Bragg光栅的采动支承压力分布试验研究[J]. 西安科技大学学报 2016(02)
    • [20].低能质子的Bragg曲线测量[J]. 中国原子能科学研究院年报 2017(00)
    • [21].Two-dimensional non-spatial filtering based on holographic Bragg gratings[J]. Chinese Physics B 2010(07)
    • [22].Fiber Bragg Gratings in Small-Core Ge-Doped Photonic Crystal Fibers[J]. Journal of Electronic Science and Technology of China 2008(04)
    • [23].Thermal characteristics of Fabry–Perot cavity based on regenerated fiber Bragg gratings[J]. Chinese Optics Letters 2018(12)
    • [24].Damage and recovery of fiber Bragg grating under radiation environment[J]. Chinese Physics B 2018(09)
    • [25].光纤Bragg光栅倾角传感器的标定与不确定度分析[J]. 光学技术 2017(03)
    • [26].Irradiation effect on strain sensitivity coefficient of strain sensing fiber Bragg gratings[J]. Chinese Physics B 2014(01)
    • [27].基于3G的光纤Bragg光栅地层沉降监测系统[J]. 传感器与微系统 2013(09)
    • [28].Theoretical analysis of polarization properties for tilted fiber Bragg gratings[J]. Science China(Information Sciences) 2010(02)
    • [29].一种基于光纤Bragg光栅传感器的挡土墙变形监测技术[J]. 传感器与微系统 2010(11)
    • [30].Mechanism of Bragg Diffraction-Assisted Light Extraction in GaN-based Light-Emitting Diodes Based on a Self-Consistent Model[J]. Communications in Theoretical Physics 2009(09)

    标签:;  ;  ;  ;  ;  

    测量液位的波纹膜片式光纤Bragg光栅压力传感器
    下载Doc文档

    猜你喜欢