本文主要研究内容
作者(2019)在《Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing》一文中研究指出:Magnesium alloys have shown great potential for their use in the medical device field, due to the promising biodegradability. However, it remains a challenge to characterize the degradation behavior of the Mg alloys in a quantitative manner. As such, controlling the degradation rate of the Mg alloys as per our needs is still hard, which greatly limits the practical application of the Mg alloys as a degradable biomaterial.This paper discussed a numerical model developed based on the diffusion theory, which can capture the experimental degradation behavior of the Mg alloys precisely. The numerical model is then implemented into a finite element scheme, where the model is calibrated with the data from our previous studies on the corrosion of the as-cast Mg-1 Ca and the as-rolled Mg-3 Ge binary alloys. The degradation behavior of a pin implant is predicted using the calibrated model to demonstrate the model’s capability. A standard flow is provided in a practical framework for obtaining the degradation behavior of any biomedical Mg alloys. This methodology was further verified via the comparison with enormous available experimental results. Lastly, the material parameters defined in this model were provided as a new kind of material property.
Abstract
Magnesium alloys have shown great potential for their use in the medical device field, due to the promising biodegradability. However, it remains a challenge to characterize the degradation behavior of the Mg alloys in a quantitative manner. As such, controlling the degradation rate of the Mg alloys as per our needs is still hard, which greatly limits the practical application of the Mg alloys as a degradable biomaterial.This paper discussed a numerical model developed based on the diffusion theory, which can capture the experimental degradation behavior of the Mg alloys precisely. The numerical model is then implemented into a finite element scheme, where the model is calibrated with the data from our previous studies on the corrosion of the as-cast Mg-1 Ca and the as-rolled Mg-3 Ge binary alloys. The degradation behavior of a pin implant is predicted using the calibrated model to demonstrate the model’s capability. A standard flow is provided in a practical framework for obtaining the degradation behavior of any biomedical Mg alloys. This methodology was further verified via the comparison with enormous available experimental results. Lastly, the material parameters defined in this model were provided as a new kind of material property.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Materials Science & Technology的,发表于刊物Journal of Materials Science & Technology2019年07期论文,是一篇关于,Journal of Materials Science & Technology2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Materials Science & Technology2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。