拓扑分次C*-代数的对角不变理想与归纳极限

拓扑分次C*-代数的对角不变理想与归纳极限

论文摘要

设A为一个C*—代数(不一定有单位,也不一定可交换)。{Ei}i∈I为一族Hilbert A-模,则它们的无限直和(?)Ei仍为Hilbert A-模。记L(E,E)={t|t∶E→E,(?)t*∶E→E,使得〈tx,y〉=〈x,t*y〉,(?)x,y∈E},则L(E,E)为一个C*-代数。 设J为拓扑分次C*-代数B的闭的双边理想,定义J1=〈J ∩ Be〉为由J ∩ Be生成的理想;J2={b∈B|Ft(b)∈J,(?)t∈Γ};J3=IndJ={b∈B|Fe(b*b)∈J},则有J1(?)J2=J3,且J3为B的一个理想。记B∞=Span{bt|bt∈Bt,t∈Γ},我们有如下结论:拓扑分次C*-代数B的理想I是对角不变的充要条件为:(?)I(?)IndJ,对B的某个理想J。 设(G1,E1),(G2,E2)为两个拟格序群,记TE1,TE2为相应的Toeplitz算子代数。设φ:G1→G2为一个保单位的群同态,使得φ(E1)(?)E2。则上述两个Toeplitz算子代数的自然同态映照成为C*-代数的单同态的充要条件为下列条件同时成立:(1)当x,y∈局时,φ(x)=φ(y)(?)x=y。(2)(?)x,y∈E1,x(?)y∈E1(?)φ(x)(?)φ(y)∈E2;当x(?)y∈E1时,φ(x(?)y)=φ(x)(?)φ(y)。(3)φ(G1)∩E2=φ(E1)。作为应用,我们刻划了Toeplitz算子代数的归纳极限。

论文目录

  • 中文摘要
  • 英文摘要
  • 序言
  • *-模'>第一章 Hilbert C*-模
  • *-代数的对角不变理想'>第二章 拓扑分次C*-代数的对角不变理想
  • *-代数'>2.1 拓扑分次C*-代数
  • 2.2 主要结果
  • 第三章 Teoplitz算子代数的归纳极限
  • 3.1 预备知识
  • *-代数的归纳极限'>3.1.1 C*-代数的归纳极限
  • 3.1.2 群的归纳极限
  • 3.1.3 拟格序群上的Toeplitz算子代数
  • 3.2 主要结果
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].Commutators and Semi-commutators of Monomial Toeplitz Operators on the Pluriharmonic Hardy Space[J]. Chinese Annals of Mathematics,Series B 2020(05)
    • [2].Algebraic Properties of Dual Toeplitz Operators on Harmonic Hardy Space over Polydisc[J]. Journal of Mathematical Research with Applications 2016(06)
    • [3].Positivity of Toeplitz Operators on Harmonic Bergman Space[J]. Acta Mathematica Sinica 2016(02)
    • [4].Positivity of Fock Toeplitz Operators via the Berezin Transform[J]. Chinese Annals of Mathematics,Series B 2016(04)
    • [5].The Commutants of the Toeplitz Operators with Radial Symbols on the Pluriharmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2015(01)
    • [6].Algebraic Properties of Toeplitz Operators on Cutoff Harmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2020(02)
    • [7].基于均值的Toeplitz矩阵填充的子空间算法[J]. 计算数学 2017(02)
    • [8].求解Toeplitz线性系统的迭代方法[J]. 沈阳大学学报(自然科学版) 2018(05)
    • [9].Zero Products and Finite Rank of Toeplitz Operators on the Harmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2017(03)
    • [10].Dual Toeplitz Operators on the Unit Ball[J]. Journal of Mathematical Research with Applications 2017(06)
    • [11].Algebraic Properties of Toeplitz and Small Hankel Operators on the Harmonic Bergman Space[J]. Acta Mathematica Sinica(English Series) 2014(08)
    • [12].Commuting Hankel and Toeplitz Operators on the Hardy Space of the Bidisk[J]. 数学研究与评论 2010(02)
    • [13].A Gohberg-Semencul Type Formula for the Inverse of Conjugate-Toeplitz Matrix and Applications[J]. Acta Mathematicae Applicatae Sinica 2018(02)
    • [14].Commuting Dual Toeplitz Operators on the Harmonic Dirichlet Space[J]. Acta Mathematica Sinica 2016(09)
    • [15].Algebraic Properties of Toeplitz Operators on the Harmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2016(04)
    • [16].Commuting Toeplitz Operators on the Hardy Space of the Polydisk[J]. Acta Mathematica Sinica 2015(04)
    • [17].Schatten-p Class(0
    • [18].Toeplitz Operators with Unbounded Symbols on Segal-Bargmann Space[J]. Journal of Mathematical Research with Applications 2015(03)
    • [19].Dual Toeplitz Operators on the Sphere[J]. Acta Mathematica Sinica 2013(09)
    • [20].Hyponormal Toeplitz Operators on the Polydisk[J]. Acta Mathematica Sinica 2012(02)
    • [21].Completely Non-Normal Toeplitz Operators[J]. 数学研究与评论 2011(04)
    • [22].离散交换群上Toeplitz算子的代数性质(英文)[J]. 数学研究与评论 2008(02)
    • [23].Toeplitz方程组的反称化快速算法[J]. 周口师范学院学报 2019(05)
    • [24].Bounded and Compact Toeplitz Operators on the Weighted Bergman Space over the Bidisk[J]. Acta Mathematica Sinica 2014(01)
    • [25].Product and Commutativity of Slant Toeplitz Operators[J]. 数学研究及应用 2013(01)
    • [26].近似三对角Toeplitz方程组的并行化实现[J]. 吉林农业 2013(03)
    • [27].Schatten p-Class Toeplitz Operators with Unbounded Symbols on Pluriharmonic Bergman Space[J]. Acta Mathematica Sinica 2013(12)
    • [28].Invertible Toeplitz Operators Products on the Bergman Space of the Polydisk[J]. 数学研究及应用 2012(05)
    • [29].Commutant of Analytic Toeplitz Operators on the Bergman Space[J]. Acta Mathematica Sinica(English Series) 2010(12)
    • [30].Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball[J]. Chinese Annals of Mathematics 2009(03)

    标签:;  ;  ;  ;  ;  

    拓扑分次C*-代数的对角不变理想与归纳极限
    下载Doc文档

    猜你喜欢