论文摘要
二次约束条件下的二次规划是很值得研究的一类问题,一方面它频繁地出现在科学研究、工程技术等应用领域,另一方面许多非线性问题也可转化为此类模型进行求解。本文主要利用求非凸规划全局最优性条件的新方法—L-次微分方法(与凸分析中的概念不同,一个函数在某点的L-次微分是一个函数集,该函数集可能是一些非线性函数所组成的集合。),考察和研究了几类特殊的带二次约束二次规划问题的全局最优性条件。在第一章我们首先简要介绍了研究全局最优性条件的必要性和研究现状,然后引入了函数的L-次微分和集合的L-正则锥的概念,在此基础上根据文[1]给出了一般带二次约束二次规划问题的全局最优性的拉格朗日乘子条件。第二章主要讨论无约束0-1二次规划的全局最优性条件。首先在文[2]结论基础上做简单变换后得到了无约束0-1二次规划问题的充分条件和必要条件,然后又把结论进一步推广至更一般的情形,最后又考虑选取不同的函数集L给出了一个充分必要条件。在第三章主要考虑了两类有箱约束的二次约束二次规划问题的全局最优性条件。第四章研究了带二次等式约束二次规划问题的全局优化问题。第五章是总结和进一步要做的工作。
论文目录
相关论文文献
- [1].混合整数非线性规划问题的全局最优性条件(英文)[J]. 四川大学学报(自然科学版) 2017(03)
- [2].分式优化问题的局部和全局最优性条件[J]. 吉首大学学报(自然科学版) 2020(01)
- [3].带0-1和线性约束的特殊三次规划问题的全局最优性条件[J]. 湖北民族学院学报(自然科学版) 2016(02)
- [4].双值约束非凸三次规化问题的全局最优性条件[J]. 运筹学学报 2015(02)
- [5].具有超矩形约束的三次规划的全局最优性条件[J]. 重庆师范大学学报(自然科学版) 2014(04)
- [6].一类混合整数约束三次规划问题的全局最优性条件[J]. 重庆师范大学学报(自然科学版) 2016(05)
- [7].一类非凸二次规划问题的全局最优性条件[J]. 青岛大学学报(自然科学版) 2010(03)
- [8].混合整数二次规划问题的全局最优性条件(英文)[J]. 应用数学 2011(04)
- [9].线性约束多项式整数规划问题的全局最优性条件[J]. 重庆师范大学学报(自然科学版) 2017(01)
- [10].具有二次约束的二次规划全局最优性条件[J]. 工程数学学报 2015(01)
- [11].基于二进制二次规划全局最优性条件的GSSK系统的检测算法[J]. 系统工程与电子技术 2015(07)
- [12].带相关噪声的观测融合稳态Kalman滤波算法及其全局最优性[J]. 电子与信息学报 2009(03)
- [13].带有二次约束的一些非凸二次规划问题的全局最优性条件[J]. 重庆师范大学学报(自然科学版) 2008(03)
- [14].带相关噪声的加权观测融合估计算法及其全局最优性[J]. 系统工程与电子技术 2010(10)
- [15].一类新的水平值估计方法的全局最优性条件研究[J]. 运筹学学报 2011(01)
- [16].运用遗传算法进行智能音乐作曲研究[J]. 微型电脑应用 2014(03)
- [17].一种新的进化算法——种子优化算法[J]. 模式识别与人工智能 2008(05)